Crack propagation versus fiber alignment in collagen gels: Experiments and multiscale simulation

Sarah M. Vanderheiden, Mohammad F. Hadi, Victor H Barocas

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

It is well known that the organization of the fibers constituting a collagenous tissue can affect its failure behavior. Less clear is how that effect can be described computationally so as to predict the failure of a native or engineered tissue under the complex loading conditions that can occur in vivo. Toward the goal of a general predictive strategy, we applied our multiscale model of collagen gel mechanics to the failure of a double-notched gel under tension, comparing the results for aligned and isotropic samples. In both computational and laboratory experiments, we found that the aligned gels were more likely to fail by connecting the two notches than the isotropic gels. For example, when the initial notches were 30% of the sample width (normalized tip-to-edge distance = 0.7), the normalized tip-to-tip distance at which the transition occurred from between-notch failure to across-sample failure shifted from 0.6 to 1.0. When the model predictions for the type of failure event (between the two notches versus across the sample width) were compared to the experimental results, the two were found to be strongly covariant by Fisher's exact test (p < 0.05) for both the aligned and isotropic gels with no fitting parameters. Although the double-notch system is idealized, and the collagen gel system is simpler than a true tissue, it presents a simple model system for studying failure of anisotropic tissues in a controlled setting. The success of the computational model suggests that the multiscale approach, in which the structural complexity is incorporated via changes in the model networks rather than via changes to a constitutive equation, has the potential to predict tissue failure under a wide range of conditions.

Original languageEnglish (US)
Article number121002
JournalJournal of Biomechanical Engineering
Volume137
Issue number12
DOIs
StatePublished - Dec 1 2015

Fingerprint

Collagen
Crack propagation
Gels
Tissue
Fibers
Experiments
Constitutive equations
Mechanics

Cite this

Crack propagation versus fiber alignment in collagen gels : Experiments and multiscale simulation. / Vanderheiden, Sarah M.; Hadi, Mohammad F.; Barocas, Victor H.

In: Journal of Biomechanical Engineering, Vol. 137, No. 12, 121002, 01.12.2015.

Research output: Contribution to journalArticle

@article{d9699a9ee6ad4777bdd10bebf1dd0ba4,
title = "Crack propagation versus fiber alignment in collagen gels: Experiments and multiscale simulation",
abstract = "It is well known that the organization of the fibers constituting a collagenous tissue can affect its failure behavior. Less clear is how that effect can be described computationally so as to predict the failure of a native or engineered tissue under the complex loading conditions that can occur in vivo. Toward the goal of a general predictive strategy, we applied our multiscale model of collagen gel mechanics to the failure of a double-notched gel under tension, comparing the results for aligned and isotropic samples. In both computational and laboratory experiments, we found that the aligned gels were more likely to fail by connecting the two notches than the isotropic gels. For example, when the initial notches were 30{\%} of the sample width (normalized tip-to-edge distance = 0.7), the normalized tip-to-tip distance at which the transition occurred from between-notch failure to across-sample failure shifted from 0.6 to 1.0. When the model predictions for the type of failure event (between the two notches versus across the sample width) were compared to the experimental results, the two were found to be strongly covariant by Fisher's exact test (p < 0.05) for both the aligned and isotropic gels with no fitting parameters. Although the double-notch system is idealized, and the collagen gel system is simpler than a true tissue, it presents a simple model system for studying failure of anisotropic tissues in a controlled setting. The success of the computational model suggests that the multiscale approach, in which the structural complexity is incorporated via changes in the model networks rather than via changes to a constitutive equation, has the potential to predict tissue failure under a wide range of conditions.",
author = "Vanderheiden, {Sarah M.} and Hadi, {Mohammad F.} and Barocas, {Victor H}",
year = "2015",
month = "12",
day = "1",
doi = "10.1115/1.4031570",
language = "English (US)",
volume = "137",
journal = "Journal of Biomechanical Engineering",
issn = "0148-0731",
publisher = "American Society of Mechanical Engineers(ASME)",
number = "12",

}

TY - JOUR

T1 - Crack propagation versus fiber alignment in collagen gels

T2 - Experiments and multiscale simulation

AU - Vanderheiden, Sarah M.

AU - Hadi, Mohammad F.

AU - Barocas, Victor H

PY - 2015/12/1

Y1 - 2015/12/1

N2 - It is well known that the organization of the fibers constituting a collagenous tissue can affect its failure behavior. Less clear is how that effect can be described computationally so as to predict the failure of a native or engineered tissue under the complex loading conditions that can occur in vivo. Toward the goal of a general predictive strategy, we applied our multiscale model of collagen gel mechanics to the failure of a double-notched gel under tension, comparing the results for aligned and isotropic samples. In both computational and laboratory experiments, we found that the aligned gels were more likely to fail by connecting the two notches than the isotropic gels. For example, when the initial notches were 30% of the sample width (normalized tip-to-edge distance = 0.7), the normalized tip-to-tip distance at which the transition occurred from between-notch failure to across-sample failure shifted from 0.6 to 1.0. When the model predictions for the type of failure event (between the two notches versus across the sample width) were compared to the experimental results, the two were found to be strongly covariant by Fisher's exact test (p < 0.05) for both the aligned and isotropic gels with no fitting parameters. Although the double-notch system is idealized, and the collagen gel system is simpler than a true tissue, it presents a simple model system for studying failure of anisotropic tissues in a controlled setting. The success of the computational model suggests that the multiscale approach, in which the structural complexity is incorporated via changes in the model networks rather than via changes to a constitutive equation, has the potential to predict tissue failure under a wide range of conditions.

AB - It is well known that the organization of the fibers constituting a collagenous tissue can affect its failure behavior. Less clear is how that effect can be described computationally so as to predict the failure of a native or engineered tissue under the complex loading conditions that can occur in vivo. Toward the goal of a general predictive strategy, we applied our multiscale model of collagen gel mechanics to the failure of a double-notched gel under tension, comparing the results for aligned and isotropic samples. In both computational and laboratory experiments, we found that the aligned gels were more likely to fail by connecting the two notches than the isotropic gels. For example, when the initial notches were 30% of the sample width (normalized tip-to-edge distance = 0.7), the normalized tip-to-tip distance at which the transition occurred from between-notch failure to across-sample failure shifted from 0.6 to 1.0. When the model predictions for the type of failure event (between the two notches versus across the sample width) were compared to the experimental results, the two were found to be strongly covariant by Fisher's exact test (p < 0.05) for both the aligned and isotropic gels with no fitting parameters. Although the double-notch system is idealized, and the collagen gel system is simpler than a true tissue, it presents a simple model system for studying failure of anisotropic tissues in a controlled setting. The success of the computational model suggests that the multiscale approach, in which the structural complexity is incorporated via changes in the model networks rather than via changes to a constitutive equation, has the potential to predict tissue failure under a wide range of conditions.

UR - http://www.scopus.com/inward/record.url?scp=84946082098&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84946082098&partnerID=8YFLogxK

U2 - 10.1115/1.4031570

DO - 10.1115/1.4031570

M3 - Article

C2 - 26355475

AN - SCOPUS:84946082098

VL - 137

JO - Journal of Biomechanical Engineering

JF - Journal of Biomechanical Engineering

SN - 0148-0731

IS - 12

M1 - 121002

ER -