TY - JOUR
T1 - Coupled-surface investigation of the photodissociation of NH3 (Ã)
T2 - Effect of exciting the symmetric and antisymmetric stretching modes
AU - Bonhommeau, David
AU - Valero, Rosendo
AU - Truhlar, Donald G.
AU - Jasper, Ahren W.
PY - 2009
Y1 - 2009
N2 - Using previously developed potential energy surfaces and their couplings, non-Born-Oppenheimer trajectory methods are used to study the state-selected photodissociation of ammonia, prepared with up to six quanta of vibrational excitation in the symmetric (ν1) or antisymmetric (ν3) stretching modes of NH3 (Ã). The predicted dynamics is mainly electronically nonadiabatic (that is, it produces ground electronic state amino radicals). The small probability of forming the excited-state amino radical is found, for low excitations, to increase with total energy and to be independent of whether the symmetric or antisymmetric stretch is excited; however some selectivity with respect to exciting the antisymmetric stretch is found when more than one quantum of excitation is added to the stretches, and more than 50% of the amino radical are found to be electronically excited when six quanta are placed in the antisymmetric stretch. These results are in contrast to the mechanism inferred in recent experimental work, where excitation of the antisymmetric stretch by a single quantum was found to produce significant amounts of excited-state products via adiabatic dissociation at total energies of about 7.0 eV. Both theory and experiment predict a broad range of translational energies for the departing H atoms when the symmetric stretch is excited, but the present simulations do not reproduce the experimental translational energy profiles when the antisymmetric stretch is excited. The sensitivity of the predicted results to several aspects of the calculation is considered in detail, and the analysis leads to insight into the nature of the dynamics that is responsible for mode selectivity.
AB - Using previously developed potential energy surfaces and their couplings, non-Born-Oppenheimer trajectory methods are used to study the state-selected photodissociation of ammonia, prepared with up to six quanta of vibrational excitation in the symmetric (ν1) or antisymmetric (ν3) stretching modes of NH3 (Ã). The predicted dynamics is mainly electronically nonadiabatic (that is, it produces ground electronic state amino radicals). The small probability of forming the excited-state amino radical is found, for low excitations, to increase with total energy and to be independent of whether the symmetric or antisymmetric stretch is excited; however some selectivity with respect to exciting the antisymmetric stretch is found when more than one quantum of excitation is added to the stretches, and more than 50% of the amino radical are found to be electronically excited when six quanta are placed in the antisymmetric stretch. These results are in contrast to the mechanism inferred in recent experimental work, where excitation of the antisymmetric stretch by a single quantum was found to produce significant amounts of excited-state products via adiabatic dissociation at total energies of about 7.0 eV. Both theory and experiment predict a broad range of translational energies for the departing H atoms when the symmetric stretch is excited, but the present simulations do not reproduce the experimental translational energy profiles when the antisymmetric stretch is excited. The sensitivity of the predicted results to several aspects of the calculation is considered in detail, and the analysis leads to insight into the nature of the dynamics that is responsible for mode selectivity.
UR - http://www.scopus.com/inward/record.url?scp=67649130343&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67649130343&partnerID=8YFLogxK
U2 - 10.1063/1.3132222
DO - 10.1063/1.3132222
M3 - Article
C2 - 19548723
AN - SCOPUS:67649130343
VL - 130
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
SN - 0021-9606
IS - 23
M1 - 234303
ER -