Abstract
Pitch and timbre are two primary features of auditory perception that are generally considered independent. However, an increase in pitch (produced by a change in fundamental frequency) can be confused with an increase in brightness (an attribute of timbre related to spectral centroid) and vice versa. Previous work indicates that pitch and timbre are processed in overlapping regions of the auditory cortex, but are separable to some extent via multivoxel pattern analysis. Here, we tested whether attention to one or other feature increases the spatial separation of their cortical representations and if attention can enhance the cortical representation of these features in the absence of any physical change in the stimulus. Ten human subjects (four female, six male) listened to pairs of tone triplets varying in pitch, timbre, or both and judged which tone triplet had the higher pitch or brighter timbre. Variations in each feature engaged common auditory regions with no clear distinctions at a univariate level. Attending to one did not improve the separability of the neural representations of pitch and timbre at the univariate level. At the multivariate level, the classifier performed above chance in distinguishing between conditions in which pitch or timbre was discriminated. The results confirm that the computations underlying pitch and timbre perception are subserved by strongly overlapping cortical regions, but reveal that attention to one or other feature leads to distinguishable activation patterns even in the absence of physical differences in the stimuli. SIGNIFICANCE STATEMENT Although pitch and timbre are generally thought of as independent auditory features of a sound, pitch height and timbral brightness can be confused for one another. This study shows that pitch and timbre variations are represented in overlapping regions of auditory cortex, but that they produce distinguishable patterns of activation. Most importantly, the patterns of activation can be distinguished based on whether subjects attended to pitch or timbre even when the stimuli remained physically identical. The results therefore show that variations in pitch and timbre are represented by overlapping neural networks, but that attention to different features of the same sound can lead to distinguishable patterns of activation.
Original language | English (US) |
---|---|
Pages (from-to) | 3292-3300 |
Number of pages | 9 |
Journal | Journal of Neuroscience |
Volume | 39 |
Issue number | 17 |
DOIs | |
State | Published - Apr 24 2019 |
Bibliographical note
Publisher Copyright:© 2019 the authors.
Keywords
- Attention
- Auditory cortex
- Pitch
- Timbre
- fMRI
PubMed: MeSH publication types
- Journal Article