TY - JOUR
T1 - Correlations of online search engine trends with coronavirus disease (COVID-19) incidence
T2 - Infodemiology study
AU - Higgins, Thomas S.
AU - Wu, Arthur W.
AU - Sharma, Dhruv
AU - Illing, Elisa A.
AU - Rubel, Kolin
AU - Ting, Jonathan Y.
AU - Alliance, Snot Force
N1 - Publisher Copyright:
© Thomas S Higgins.
PY - 2020/4
Y1 - 2020/4
N2 - Background: The coronavirus disease (COVID-19) is the latest pandemic of the digital age. With the internet harvesting large amounts of data from the general population in real time, public databases such as Google Trends (GT) and the Baidu Index (BI) can be an expedient tool to assist public health efforts. Objective: The aim of this study is to apply digital epidemiology to the current COVID-19 pandemic to determine the utility of providing adjunctive epidemiologic information on outbreaks of this disease and evaluate this methodology in the case of future pandemics. Methods: An epidemiologic time series analysis of online search trends relating to the COVID-19 pandemic was performed from January 9, 2020, to April 6, 2020. BI was used to obtain online search data for China, while GT was used for worldwide data, the countries of Italy and Spain, and the US states of New York and Washington. These data were compared to real-world confirmed cases and deaths of COVID-19. Chronologic patterns were assessed in relation to disease patterns, significant events, and media reports. Results: Worldwide search terms for shortness of breath, anosmia, dysgeusia and ageusia, headache, chest pain, and sneezing had strong correlations (r>0.60, P<.001) to both new daily confirmed cases and deaths from COVID-19. GT COVID-19 (search term) and GT coronavirus (virus) searches predated real-world confirmed cases by 12 days (r=0.85, SD 0.10 and r=0.76, SD 0.09, respectively, P<.001). Searches for symptoms of diarrhea, fever, shortness of breath, cough, nasal obstruction, and rhinorrhea all had a negative lag greater than 1 week compared to new daily cases, while searches for anosmia and dysgeusia peaked worldwide and in China with positive lags of 5 days and 6 weeks, respectively, corresponding with widespread media coverage of these symptoms in COVID-19. Conclusions: This study demonstrates the utility of digital epidemiology in providing helpful surveillance data of disease outbreaks like COVID-19. Although certain online search trends for this disease were influenced by media coverage, many search terms reflected clinical manifestations of the disease and showed strong correlations with real-world cases and deaths.
AB - Background: The coronavirus disease (COVID-19) is the latest pandemic of the digital age. With the internet harvesting large amounts of data from the general population in real time, public databases such as Google Trends (GT) and the Baidu Index (BI) can be an expedient tool to assist public health efforts. Objective: The aim of this study is to apply digital epidemiology to the current COVID-19 pandemic to determine the utility of providing adjunctive epidemiologic information on outbreaks of this disease and evaluate this methodology in the case of future pandemics. Methods: An epidemiologic time series analysis of online search trends relating to the COVID-19 pandemic was performed from January 9, 2020, to April 6, 2020. BI was used to obtain online search data for China, while GT was used for worldwide data, the countries of Italy and Spain, and the US states of New York and Washington. These data were compared to real-world confirmed cases and deaths of COVID-19. Chronologic patterns were assessed in relation to disease patterns, significant events, and media reports. Results: Worldwide search terms for shortness of breath, anosmia, dysgeusia and ageusia, headache, chest pain, and sneezing had strong correlations (r>0.60, P<.001) to both new daily confirmed cases and deaths from COVID-19. GT COVID-19 (search term) and GT coronavirus (virus) searches predated real-world confirmed cases by 12 days (r=0.85, SD 0.10 and r=0.76, SD 0.09, respectively, P<.001). Searches for symptoms of diarrhea, fever, shortness of breath, cough, nasal obstruction, and rhinorrhea all had a negative lag greater than 1 week compared to new daily cases, while searches for anosmia and dysgeusia peaked worldwide and in China with positive lags of 5 days and 6 weeks, respectively, corresponding with widespread media coverage of these symptoms in COVID-19. Conclusions: This study demonstrates the utility of digital epidemiology in providing helpful surveillance data of disease outbreaks like COVID-19. Although certain online search trends for this disease were influenced by media coverage, many search terms reflected clinical manifestations of the disease and showed strong correlations with real-world cases and deaths.
KW - Baidu
KW - Big data
KW - China
KW - Coronavirus
KW - COVID-19
KW - Digital health
KW - Epidemiology
KW - Google Trends
KW - Infodemiology
KW - Infoveillance
KW - Italy
KW - New York
KW - SARS-CoV-2
KW - Spain
KW - Washington
UR - http://www.scopus.com/inward/record.url?scp=85087206834&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087206834&partnerID=8YFLogxK
U2 - 10.2196/19702
DO - 10.2196/19702
M3 - Article
AN - SCOPUS:85087206834
SN - 2369-2960
VL - 6
JO - JMIR Public Health and Surveillance
JF - JMIR Public Health and Surveillance
IS - 2
M1 - e19702
ER -