Abstract
Spectrum sensing is a crucial issue in cognitive radio networks. To improve the sensing performance, cooperation among the secondary users can be utilized to collect space diversity. In this paper, we quantify the diversity order for various cooperative spectrum sensing strategies. We first notice that, in a spectrum sensing problem, diversity should reflect both the false alarm and missed detection behaviors since they respectively capture the efficiency and reliability of the overall cognitive system. Hence, we consider both false alarm and missed detection probabilities individually and jointly via the average error probability. With the knowledge of both the noise strength and the primary user signal strength, the threshold of the Neyman-Pearson detector can be varied to control the system performance in desirable ways. Interesting tradeoffs between system efficiency and reliability are found in various cooperative strategies and analytical results are presented to guide practical system designs with different preferences.
Original language | English (US) |
---|---|
Article number | 5422755 |
Pages (from-to) | 3218-3227 |
Number of pages | 10 |
Journal | IEEE Transactions on Signal Processing |
Volume | 58 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2010 |
Externally published | Yes |
Keywords
- Cognitive radio systems
- Cooperative diversity
- Spectrum sensing
- System efficiency and reliability tradeoff