Cooling-Aware Energy and Workload Management in Data Centers via Stochastic Optimization

Tianyi Chen, Xin Wang, Georgios B. Giannakis

Research output: Contribution to journalArticlepeer-review

56 Scopus citations


While the quest of end users for fast and convenient Internet services grows steadily, energy-hungry data centers correspondingly expand in both numbers and scale - a fact that raises global warming and climate change concerns. In addition, high penetration of renewables, development of energy-efficient cooling facilities, and flexibility of distributed storage units, all call for a system-wide energy and workload management policy for future sustainable data centers. As implementing offline management policies is practically infeasible due to complexity and the lack of future information, real-time management schemes are considered here under a systematic framework. Leveraging stochastic optimization tools, a unified management approach is proposed allowing data centers to adaptively respond to intermittent availability of renewables, variability of cooling efficiency, information technology (IT) workload shift, and energy price fluctuations under long-term quality-of-service (QoS) requirements. Meanwhile, it is rigorously established that when storage devices have sufficiently high capacity, or, the difference between electricity purchase and selling prices is small, the proposed algorithm yields a feasible and near-optimal management strategy without knowing the distributions of the independently and identically distributed (i.i.d.) workload, renewable, and electricity price processes. Numerical results further demonstrate that the proposed algorithm works well not only for i.i.d. processes, but also in real-data scenarios, where the underlying randomness is highly correlated over time.

Original languageEnglish (US)
Article number7328245
Pages (from-to)402-415
Number of pages14
JournalIEEE Journal on Selected Topics in Signal Processing
Issue number2
StatePublished - Mar 2016

Bibliographical note

Funding Information:
Work in this paper was supported in part by the U.S. National Science Foundation under Grants 1509040, 1508993, 1509005, 1423316, 1442686, and 1202135, in part by the China Recruitment Program of Global Young Experts, in part by the Program for New Century Excellent Talents in University, in part by the Innovation Program of Shanghai Municipal Education Commission, and in part by the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant 2012ZX03001013.

Publisher Copyright:
© 2015 IEEE.


  • Cooling-aware
  • cost minimization
  • data center
  • distributed storage
  • renewable generation
  • stochastic optimization


Dive into the research topics of 'Cooling-Aware Energy and Workload Management in Data Centers via Stochastic Optimization'. Together they form a unique fingerprint.

Cite this