Conwective transport phenomena on the suction surface of a turbine blade including the influence of secondary flows near the endwall

P. H. Chen, R. J. Goldstein

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

A naphthalene sublimation technique is employed to study the mass transfer distribution on the suction (convex) surface of a simulated turbine blade. Comparison with a heat transfer study shows good agreement in the general trends in the region of two-dimensional flow on the blade. Near the endwall, local connect ive coefficients on the suction surface are obtained at 4608 locations from two separate runs. The secondary flows in the passage significantly affect the mass transfer rate on the suction surface and their influence extends to a height of 75 percent of the chord length, from the endwall, in the trailing edge region. The mass transfer rate in the region near the endwall is extremely high due to small but intense vortices. Thus, a large variation in the mass transfer distribution occurs on the suction surface, from a mass transfer Stanton number of 0.0005 to a maximum of 0.01. In the twodimensional flow region, the mass transfer distributions at two different Reynolds numbers are presented.

Original languageEnglish (US)
Pages (from-to)776-787
Number of pages12
JournalJournal of Turbomachinery
Volume114
Issue number4
DOIs
StatePublished - Oct 1992

Fingerprint

Dive into the research topics of 'Conwective transport phenomena on the suction surface of a turbine blade including the influence of secondary flows near the endwall'. Together they form a unique fingerprint.

Cite this