TY - JOUR
T1 - Convexification of Permutation-Invariant Sets and an Application to Sparse Principal Component Analysis
AU - Kim, Jinhak
AU - Tawarmalani, Mohit
AU - Richard, Jean Philippe P.
N1 - Publisher Copyright:
Copyright: © 2021 INFORMS.
PY - 2022/11
Y1 - 2022/11
N2 - We develop techniques to convexify a set that is invariant under permutation and/or change of sign of variables and discuss applications of these results. First, we convexify the intersection of the unit ball of a permutation and sign-invariant norm with a cardinality constraint. This gives a nonlinear formulation for the feasible set of sparse principal component analysis (PCA) and an alternative proof of the K-support norm. Second, we characterize the convex hull of sets of matrices defined by constraining their singular values. As a consequence, we generalize an earlier result that characterizes the convex hull of rank-constrained matrices whose spectral norm is below a given threshold. Third, we derive convex and concave envelopes of various permutation-invariant nonlinear functions and their level sets over hypercubes, with congruent bounds on all variables. Finally, we develop new relaxations for the exterior product of sparse vectors. Using these relaxations for sparse PCA, we show that our relaxation closes 98% of the gap left by a classical semidefinite programming relaxation for instances where the covariance matrices are of dimension up to 50 × 50.
AB - We develop techniques to convexify a set that is invariant under permutation and/or change of sign of variables and discuss applications of these results. First, we convexify the intersection of the unit ball of a permutation and sign-invariant norm with a cardinality constraint. This gives a nonlinear formulation for the feasible set of sparse principal component analysis (PCA) and an alternative proof of the K-support norm. Second, we characterize the convex hull of sets of matrices defined by constraining their singular values. As a consequence, we generalize an earlier result that characterizes the convex hull of rank-constrained matrices whose spectral norm is below a given threshold. Third, we derive convex and concave envelopes of various permutation-invariant nonlinear functions and their level sets over hypercubes, with congruent bounds on all variables. Finally, we develop new relaxations for the exterior product of sparse vectors. Using these relaxations for sparse PCA, we show that our relaxation closes 98% of the gap left by a classical semidefinite programming relaxation for instances where the covariance matrices are of dimension up to 50 × 50.
KW - convexification
KW - majorization
KW - permutation-invariant sets
KW - sparse PCA
UR - http://www.scopus.com/inward/record.url?scp=85151883852&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85151883852&partnerID=8YFLogxK
U2 - 10.1287/moor.2021.1219
DO - 10.1287/moor.2021.1219
M3 - Article
AN - SCOPUS:85151883852
SN - 0364-765X
VL - 47
SP - 2547
EP - 2584
JO - Mathematics of Operations Research
JF - Mathematics of Operations Research
IS - 4
ER -