CONVECTIVE INSTABILITY IN A MELT LAYER HEATED FROM BELOW.

E. M. Sparrow, L. Lee, N. Shamsundar

Research output: Contribution to journalArticlepeer-review

Abstract

This paper is concerned with the conditions marking the onset of convective motions in a horizontal, liquid melt layer. The melt layer is created when a solid, initially at its saturation temperature, is heated from below. The analysis is carried out for liquid melts whose densities decrease with increasing temperature. Linear stability theory is employed to determine the conditions marking the onset of motion. The results of the analysis are expressed in terms of two Rayleigh numbers. One of these, the internal Rayleigh number, is based on the instantaneous thickness and instantaneous temperature difference across the layer. The other, the external Rayleigh number, is more convenient to use in applications problems since it contains quantities which are constant and a priori prescribable. For a melting problem where the external Rayleigh number is large, instability occurs soon after the start of heating. At smaller external Rayleigh numbers, the duration time of the regime of no motion increases markedly. At large times, the stability results for convective heating coincide with those for stepped wall temperature. In addition to the results for the stability problem, results for conduction phase change (in the absence of motion) are also presented for the surface convection boundary condition.

Original languageEnglish (US)
JournalAmerican Society of Mechanical Engineers (Paper)
Issue number76 -HT-BB
StatePublished - 1976

Fingerprint

Dive into the research topics of 'CONVECTIVE INSTABILITY IN A MELT LAYER HEATED FROM BELOW.'. Together they form a unique fingerprint.

Cite this