Abstract
Consideration is given to the onset of convective motions in a horizontal melt layer created by solid-to-liquid phase change. The melt layer is heated at its lower bounding surface either due to convective transfer from an adjacent fluid medium or to a step change in wall temperature. The analysis is carried out for liquid melts whose densities decrease with increasing temperature. Linear stability theory is employed to determine the conditions marking the onset of motion. The results of the analysis are expressed in terms of two Rayleigh numbers. One of these, the internal Rayleigh number, is based on the instantaneous thickness and instantaneous temperature difference across the layer. The other, the external Rayleigh number, is more convenient to use in applications problems since it contains quantities which are constant and a priori prescribable. For a melting problem where the external Rayleigh number is large, instability occurs soon after the start of heating. At smaller external Rayleigh numbers, the duration time of the regime of no motion increases markedly. At large times, the stability results for convective heating coincide with those for stepped wall temperature. In addition to the results for the stability problem, results for conduction phase change (in the absence of motion) are also presented for the surface convection boundary condition.
Original language | English (US) |
---|---|
Pages (from-to) | 88-94 |
Number of pages | 7 |
Journal | Journal of Heat Transfer |
Volume | 98 |
Issue number | 1 |
DOIs | |
State | Published - Feb 1976 |