Control approach to computing the feedback capacity for stationary finite dimensional Gaussian channels

Chong Li, Nicola Elia

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

We firstly extend the interpretation of feedback communication over stationary finite dimensional Gaussian channels as feedback control systems by showing that, the problem of finding stabilizing feedback controllers with maximal reliable transmission rate over Youla parameters coincides with the problem of finding strictly causal filters to achieve feedback capacity recently derived in [1]. The aforementioned interpretation provides an approach to construct deterministic feedback coding schemes (with double exponential decaying error probability). We next propose an asymptotic capacity-achieving upper bounds, which can be numerically evaluated by solving finite dimensional dual optimizations. From the filters that achieve upper bounds, we derive feasible filters which lead to a sequence of lower bounds. Thus, from the lower bound filters we obtain communication systems that achieve the lower bound rate. Extensive examples show the sequence of lower bounds is asymptotic capacity-achieving as well.

Original languageEnglish (US)
Title of host publication2015 53rd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1038-1045
Number of pages8
ISBN (Electronic)9781509018239
DOIs
StatePublished - Apr 4 2016
Externally publishedYes
Event53rd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2015 - Monticello, United States
Duration: Sep 29 2015Oct 2 2015

Publication series

Name2015 53rd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2015

Other

Other53rd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2015
Country/TerritoryUnited States
CityMonticello
Period9/29/1510/2/15

Bibliographical note

Funding Information:
This work was supported by NSF under grant number ECS-0901846.

Publisher Copyright:
© 2015 IEEE.

Keywords

  • Capacity
  • Gaussian
  • convex optimization
  • stationarity

Fingerprint

Dive into the research topics of 'Control approach to computing the feedback capacity for stationary finite dimensional Gaussian channels'. Together they form a unique fingerprint.

Cite this