Contrasting Ferromagnetism in Pyrite FeS$_2$ Induced by Chemical Doping versus Electrostatic Gating

Ezra Day-Roberts, Turan Birol, Rafael M. Fernandes

Research output: Contribution to journalArticle

Abstract

Recent advances in electrostatic gating provide a novel way to modify the carrier concentration in materials via electrostatic means instead of chemical doping, thus minimizing the impurity scattering. Here, we use first-principles Density Functional Theory combined with a tight-binding approach to compare and contrast the effects of electrostatic gating and Co chemical doping on the ferromagnetic transition of FeS$_2$, a transition metal disulfide with the pyrite structure. Using tight-binding parameters obtained from maximally-localized Wannier functions, we calculate the magnetic susceptibility across a wide doping range. We find that electrostatic gating requires a higher electron concentration than the equivalent in Co doping to induce ferromagnetism via a Stoner-like mechanism. We attribute this behavior to the formation of a narrow Co band near the bottom of the conduction band under chemical doping, which is absent in the electrostatic gating case. Our results reveal that the effects of electrostatic gating go beyond a simple rigid band shift, and highlight the importance of the changes in the crystal structure promoted by gating.
Original languageUndefined/Unknown
JournalPhysical Review Materials
StateAccepted/In press - Apr 16 2020

Keywords

  • cond-mat.mtrl-sci

How much support was provided by MRSEC?

  • Primary

Reporting period for MRSEC

  • Period 7

Projects

Cite this