Continuous inference of psychological stress from sensory measurements collected in the natural environment

Kurt Plarre, Andrew Raij, Syed Monowar Hossain, Amin Ahsan Ali, Motohiro Nakajima, Mustafa Al'Absi, Emre Ertin, Thomas Kamarck, Santosh Kumar, Marcia Scott, Daniel Siewiorek, Asim Smailagic, Lorentz E. Wittmers

Research output: Chapter in Book/Report/Conference proceedingConference contribution

167 Scopus citations

Abstract

Repeated exposures to psychological stress can lead to or worsen diseases of slow accumulation such as heart diseases and cancer. The main challenge in addressing the growing epidemic of stress is a lack of robust methods to measure a person's exposure to stress in the natural environment. Periodic self-reports collect only subjective aspects, often miss stress episodes, and impose significant burden on subjects. Physiological sensors provide objective and continuous measures of stress response, but exhibit wide between-person differences and are easily confounded by daily activities (e.g., speaking, physical movements, coffee intake, etc.). In this paper, we propose, train, and test two models for continuous prediction of stress from physiological measurements captured by unobtrusive, wearable sensors. The first model is a physiological classifier that predicts whether changes in physiology represent stress. Since the effect of stress may persist in the mind longer than its acute effect on physiology, we propose a perceived stress model to predict perception of stress. It uses the output of the physiological classifier to model the accumulation and gradual decay of stress in the mind. To account for wide between-person differences, both models self-calibrate to each subject. Both models were trained using data collected from 21 subjects in a lab study, where they were exposed to cognitive, physical, and social stressors representative of that experienced in the natural environment. Our physiological classifier achieves 90% accuracy and our perceived stress model achieves a median correlation of 0.72 with self-reported rating. We also evaluate the perceived stress model on data collected from 17 participants in a two-day field study, and find that the average rating of stress obtained from our model has a correlation of 0.71 with that obtained from periodic self-reports.

Original languageEnglish (US)
Title of host publicationProceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN'11
Pages97-108
Number of pages12
StatePublished - 2011
Event10th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN'11 - Chicago, IL, United States
Duration: Apr 12 2011Apr 14 2011

Publication series

NameProceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN'11

Other

Other10th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN'11
CountryUnited States
CityChicago, IL
Period4/12/114/14/11

Keywords

  • Wearable sensors
  • physiological monitoring
  • stress inference

Fingerprint Dive into the research topics of 'Continuous inference of psychological stress from sensory measurements collected in the natural environment'. Together they form a unique fingerprint.

Cite this