Continental and oceanic core complexes

Donna L. Whitney, Christian Teyssier, Patrice Rey, W. Roger Buck

Research output: Contribution to journalReview articlepeer-review

246 Scopus citations

Abstract

Core-complex formation driven by lithospheric extension is a fi rst-order process of heat and mass transfer in the Earth. Corecomplex structures have been recognized in the continents, at slow- and ultraslowspreading mid-ocean ridges, and at continental rifted margins; in each of these settings, extension has driven the exhumation of deep crust and/or upper mantle. The style of extension and the magnitude of core-complex exhumation are determined fundamentally by rheology: (1) Coupling between brittle and ductile layers regulates fault patterns in the brittle layer; and (2) viscosity of the fl owing layer is controlled dominantly by the synextension geotherm and the presence or absence of melt. The pressure-temperature-time-fl uid-deformation history of core complexes, investigated via fi eld- and modeling-based studies, reveals the magnitude, rate, and mechanisms of advection of heat and material from deep to shallow levels, as well as the consequences for the chemical and physical evolution of the lithosphere, including the role of core-complex development in crustal differentiation, global element cycles, and ore formation. In this review, we provide a survey of ~40 yr of core-complex literature, discuss processes and questions relevant to the formation and evolution of core complexes in continental and oceanic settings, highlight the signifi cance of core complexes for lithosphere dynamics, and propose a few possible directions for future research.

Original languageEnglish (US)
Pages (from-to)273-298
Number of pages26
JournalBulletin of the Geological Society of America
Volume125
Issue number3-4
DOIs
StatePublished - Mar 2013

Fingerprint

Dive into the research topics of 'Continental and oceanic core complexes'. Together they form a unique fingerprint.

Cite this