TY - JOUR
T1 - Contextual Feedback to Superficial Layers of V1
AU - Muckli, Lars
AU - De Martino, Federico
AU - Vizioli, Luca
AU - Petro, Lucy S.
AU - Smith, Fraser W.
AU - Ugurbil, Kamil
AU - Goebel, Rainer
AU - Yacoub, Essa
N1 - Publisher Copyright:
© 2015 The Authors.
PY - 2015/10/19
Y1 - 2015/10/19
N2 - Neuronal cortical circuitry comprises feedforward, lateral, and feedback projections, each of which terminates in distinct cortical layers [1-3]. In sensory systems, feedforward processing transmits signals from the external world into the cortex, whereas feedback pathways signal the brain's inference of the world [4-11]. However, the integration of feedforward, lateral, and feedback inputs within each cortical area impedes the investigation of feedback, and to date, no technique has isolated the feedback of visual scene information in distinct layers of healthy human cortex. We masked feedforward input to a region of V1 cortex and studied the remaining internal processing. Using high-resolution functional brain imaging (0.8 mm3) and multivoxel pattern information techniques, we demonstrate that during normal visual stimulation scene information peaks in mid-layers. Conversely, we found that contextual feedback information peaks in outer, superficial layers. Further, we found that shifting the position of the visual scene surrounding the mask parametrically modulates feedback in superficial layers of V1. Our results reveal the layered cortical organization of external versus internal visual processing streams during perception in healthy human subjects. We provide empirical support for theoretical feedback models such as predictive coding [10, 12] and coherent infomax [13] and reveal the potential of high-resolution fMRI to access internal processing in sub-millimeter human cortex.
AB - Neuronal cortical circuitry comprises feedforward, lateral, and feedback projections, each of which terminates in distinct cortical layers [1-3]. In sensory systems, feedforward processing transmits signals from the external world into the cortex, whereas feedback pathways signal the brain's inference of the world [4-11]. However, the integration of feedforward, lateral, and feedback inputs within each cortical area impedes the investigation of feedback, and to date, no technique has isolated the feedback of visual scene information in distinct layers of healthy human cortex. We masked feedforward input to a region of V1 cortex and studied the remaining internal processing. Using high-resolution functional brain imaging (0.8 mm3) and multivoxel pattern information techniques, we demonstrate that during normal visual stimulation scene information peaks in mid-layers. Conversely, we found that contextual feedback information peaks in outer, superficial layers. Further, we found that shifting the position of the visual scene surrounding the mask parametrically modulates feedback in superficial layers of V1. Our results reveal the layered cortical organization of external versus internal visual processing streams during perception in healthy human subjects. We provide empirical support for theoretical feedback models such as predictive coding [10, 12] and coherent infomax [13] and reveal the potential of high-resolution fMRI to access internal processing in sub-millimeter human cortex.
UR - http://www.scopus.com/inward/record.url?scp=84945565915&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84945565915&partnerID=8YFLogxK
U2 - 10.1016/j.cub.2015.08.057
DO - 10.1016/j.cub.2015.08.057
M3 - Article
C2 - 26441356
AN - SCOPUS:84945565915
SN - 0960-9822
VL - 25
SP - 2690
EP - 2695
JO - Current Biology
JF - Current Biology
IS - 20
ER -