Constraining neutron-star matter with microscopic and macroscopic collisions

Sabrina Huth, Peter T.H. Pang, Ingo Tews, Tim Dietrich, Arnaud Le Fèvre, Achim Schwenk, Wolfgang Trautmann, Kshitij Agarwal, Mattia Bulla, Michael W. Coughlin, Chris Van Den Broeck

Research output: Contribution to journalArticlepeer-review

127 Scopus citations

Abstract

Interpreting high-energy, astrophysical phenomena, such as supernova explosions or neutron-star collisions, requires a robust understanding of matter at supranuclear densities. However, our knowledge about dense matter explored in the cores of neutron stars remains limited. Fortunately, dense matter is not probed only in astrophysical observations, but also in terrestrial heavy-ion collision experiments. Here we use Bayesian inference to combine data from astrophysical multi-messenger observations of neutron stars1–9 and from heavy-ion collisions of gold nuclei at relativistic energies10,11 with microscopic nuclear theory calculations12–17 to improve our understanding of dense matter. We find that the inclusion of heavy-ion collision data indicates an increase in the pressure in dense matter relative to previous analyses, shifting neutron-star radii towards larger values, consistent with recent observations by the Neutron Star Interior Composition Explorer mission5–8,18. Our findings show that constraints from heavy-ion collision experiments show a remarkable consistency with multi-messenger observations and provide complementary information on nuclear matter at intermediate densities. This work combines nuclear theory, nuclear experiment and astrophysical observations, and shows how joint analyses can shed light on the properties of neutron-rich supranuclear matter over the density range probed in neutron stars.

Original languageEnglish (US)
Pages (from-to)276-280
Number of pages5
JournalNature
Volume606
Issue number7913
DOIs
StatePublished - Jun 9 2022

Bibliographical note

Funding Information:
We thank D. Cozma, C. Hartnack, P. Landry, P. Russotto, Y. Wang and LIGO’s extreme matter group for valuable comments and useful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 279384907 – SFB 1245 (S.H. and A.S.); the research programme of the Netherlands Organization for Scientific Research (NWO; P.T.H.P. and C.V.D.B.); the US Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC52-06NA25396, the Laboratory Directed Research and Development programme of Los Alamos National Laboratory under project numbers 20190617PRD1 and 20190021DR, and the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) programme (I.T.); and the Max Planck Society (T.D.). M.B. acknowledges support from the Swedish Research Council (registration number 2020-03330) and M.W.C. acknowledges support by the National Science Foundation with grant numbers PHY-2010970 and OAC-2117997. A.L.F. and W.T. acknowledge the support of the French-German Collaboration Agreement between IN2P3 - DSM/CEA and GSI. K.A. acknowledges the support from the Bundesministerium für Bildung und Forschung (BMBF, German Federal Ministry of Education and Research) – Project-ID 05P19VTFC1 and Helmholtz Graduate School for Hadron and Ion Research (HGS-HIRe). Computations were performed on the national supercomputer Hawk at the High Performance Computing Center Stuttgart (HLRS) under the grant number 44189 and on SuperMUC-NG at Leibniz Supercomputing Centre Munich under project number pn29ba. In addition, computational resources have also been provided by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the US Department of Energy National Nuclear Security Administration under contract number 89233218CNA000001, and by the National Energy Research Scientific Computing Center (NERSC), which is supported by the US Department of Energy, Office of Science, under contract nmber DE-AC02-05CH11231. This research has made use of data, software and/or web tools obtained from the Gravitational Wave Open Science Center (https://www.gw-openscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO is funded by the US National Science Foundation. Virgo is funded by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hungarian institutes.

Funding Information:
We thank D. Cozma, C. Hartnack, P. Landry, P. Russotto, Y. Wang and LIGO’s extreme matter group for valuable comments and useful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 279384907 – SFB 1245 (S.H. and A.S.); the research programme of the Netherlands Organization for Scientific Research (NWO; P.T.H.P. and C.V.D.B.); the US Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC52-06NA25396, the Laboratory Directed Research and Development programme of Los Alamos National Laboratory under project numbers 20190617PRD1 and 20190021DR, and the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) programme (I.T.); and the Max Planck Society (T.D.). M.B. acknowledges support from the Swedish Research Council (registration number 2020-03330) and M.W.C. acknowledges support by the National Science Foundation with grant numbers PHY-2010970 and OAC-2117997. A.L.F. and W.T. acknowledge the support of the French-German Collaboration Agreement between IN2P3 - DSM/CEA and GSI. K.A. acknowledges the support from the Bundesministerium für Bildung und Forschung (BMBF, German Federal Ministry of Education and Research) – Project-ID 05P19VTFC1 and Helmholtz Graduate School for Hadron and Ion Research (HGS-HIRe). Computations were performed on the national supercomputer Hawk at the High Performance Computing Center Stuttgart (HLRS) under the grant number 44189 and on SuperMUC-NG at Leibniz Supercomputing Centre Munich under project number pn29ba. In addition, computational resources have also been provided by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the US Department of Energy National Nuclear Security Administration under contract number 89233218CNA000001, and by the National Energy Research Scientific Computing Center (NERSC), which is supported by the US Department of Energy, Office of Science, under contract nmber DE-AC02-05CH11231. This research has made use of data, software and/or web tools obtained from the Gravitational Wave Open Science Center ( https://www.gw-openscience.org ), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO is funded by the US National Science Foundation. Virgo is funded by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hungarian institutes.

Publisher Copyright:
© 2022, The Author(s).

Fingerprint

Dive into the research topics of 'Constraining neutron-star matter with microscopic and macroscopic collisions'. Together they form a unique fingerprint.

Cite this