TY - JOUR
T1 - Constitutive Notch Activation Upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells
AU - Wen, Yefei
AU - Bi, Pengpeng
AU - Liu, Weiyi
AU - Asakura, Atsushi
AU - Keller, Charles
AU - Kuang, Shihuan
PY - 2012/6/15
Y1 - 2012/6/15
N2 - Notch signaling is a conserved cell fate regulator during development and postnatal tissue regeneration. Using skeletal muscle satellite cells as a model and through myogenic cell lineage-specific NICDOE (overexpression of constitutively activated Notch 1 intracellular domain), here we investigate how Notch signaling regulates the cell fate choice of muscle stem cells. We show that in addition to inhibiting MyoD and myogenic differentiation, NICDOE upregulates Pax7 and promotes the self-renewal of satellite cell-derived primary myoblasts in culture. Using MyoD-/- myoblasts, we further show that NICDOE upregulates Pax7 independently of MyoD inhibition. In striking contrast to previous observations, NICDOE also inhibits S-phase entry and Ki67 expression and thus reduces the proliferation of primary myoblasts. Overexpression of canonical Notch target genes mimics the inhibitory effects of NICDOE on MyoD and Ki67 but not the stimulatory effect on Pax7. Instead, NICD regulates Pax7 through interaction with RBP-Jk, which binds to two consensus sites upstream of the Pax7 gene. Importantly, satellite cell-specific NICDOE results in impaired regeneration of skeletal muscles along with increased Pax7+ mononuclear cells. Our results establish a role of Notch signaling in actively promoting the self-renewal of muscle stem cells through direct regulation of Pax7.
AB - Notch signaling is a conserved cell fate regulator during development and postnatal tissue regeneration. Using skeletal muscle satellite cells as a model and through myogenic cell lineage-specific NICDOE (overexpression of constitutively activated Notch 1 intracellular domain), here we investigate how Notch signaling regulates the cell fate choice of muscle stem cells. We show that in addition to inhibiting MyoD and myogenic differentiation, NICDOE upregulates Pax7 and promotes the self-renewal of satellite cell-derived primary myoblasts in culture. Using MyoD-/- myoblasts, we further show that NICDOE upregulates Pax7 independently of MyoD inhibition. In striking contrast to previous observations, NICDOE also inhibits S-phase entry and Ki67 expression and thus reduces the proliferation of primary myoblasts. Overexpression of canonical Notch target genes mimics the inhibitory effects of NICDOE on MyoD and Ki67 but not the stimulatory effect on Pax7. Instead, NICD regulates Pax7 through interaction with RBP-Jk, which binds to two consensus sites upstream of the Pax7 gene. Importantly, satellite cell-specific NICDOE results in impaired regeneration of skeletal muscles along with increased Pax7+ mononuclear cells. Our results establish a role of Notch signaling in actively promoting the self-renewal of muscle stem cells through direct regulation of Pax7.
UR - http://www.scopus.com/inward/record.url?scp=84864021783&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84864021783&partnerID=8YFLogxK
U2 - 10.1128/MCB.06753-11
DO - 10.1128/MCB.06753-11
M3 - Article
C2 - 22493066
AN - SCOPUS:84864021783
SN - 0270-7306
VL - 32
SP - 2300
EP - 2311
JO - Molecular and cellular biology
JF - Molecular and cellular biology
IS - 12
ER -