Abstract
The Teacher Education and Development Study in Mathematics (TEDS-M) of 2008 focused on how teachers are prepared to teach mathematics in primary and lower-secondary schools in 17 countries. The main results were published in 2012, and the associated public-use database provides a valuable source for secondary analysis of the collected data. The data originate from complex samples and present a hierarchical structure. With future teachers embedded in programs embedded in institutions, various types of cluster effects can be observed. Complex methods, including the use of sampling weights and replication methods for variance estimation, are therefore required for data analysis. This paper focuses on the aspects that need to be considered during any exploration of relationships between variables. Correlation analysis may produce misleading results if attention is not paid to the structure under which the data were collected. We illustrate our points with exemplary analysis of TEDS-M data and propose some guidelines to address the issue.
Original language | English (US) |
---|---|
Article number | 7 |
Journal | Large-Scale Assessments in Education |
Volume | 1 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2013 |
Bibliographical note
Publisher Copyright:© 2013, Meinck and Rodriguez; licensee Springer.
Keywords
- Correlation analysis
- Higher education
- International comparative study
- Large-scale assessments
- Methodology
- Teacher education
- Variance estimation
- Weights