Abstract
The impact of water policy on conserving the Ogallala Aquifer in Groundwater Management District 3 (GMD3) in southwestern Kansas is analyzed using a system-level theoretical approach integrating agricultural water and land use patterns, changing climate, economic trends, and population dynamics. In so doing, we (1) model the current hyper-extractive coupled natural-human (CNH) system, (2) forecast outcomes of policy scenarios transitioning the current groundwater-based economic system toward more sustainable paths for the social, economic, and natural components of the integrated system, and (3) develop public policy options for enhanced conservation while minimizing the economic costs for the region's communities. The findings corroborate previous studies showing that conservation often leads initially to an expansion of irrigation activities. However, we also find that the expanded presence of irrigated acreage reduces the impact of an increasingly drier climate on the region's economy and creates greater long-term stability in the farming sector along with increased employment and population in the region. On the negative side, conservation lowers the net present value of farmers' current investments and there is not a policy scenario that achieves a truly sustainable solution as defined by Peter H. Gleick. This study reinforces the salience of interdisciplinary linked CNH models to provide policy prescriptions to untangle and address significant environmental policy issues.
Original language | English (US) |
---|---|
Pages (from-to) | 6167-6183 |
Number of pages | 17 |
Journal | Hydrology and Earth System Sciences |
Volume | 21 |
Issue number | 12 |
DOIs | |
State | Published - Dec 7 2017 |
Bibliographical note
Publisher Copyright:© 2017 Author(s).
Fingerprint
Dive into the research topics of 'Conserving the Ogallala Aquifer in southwestern Kansas: From the wells to people, a holistic coupled natural-human model'. Together they form a unique fingerprint.Datasets
-
Simulation Data From Aistrup et al. Sustaining the Ogallala Aquifer Manuscript
Aistrup, J. A., Bulatewicz, T., Kulcsar, L. J., Peterson, J. M., Steward, D. R. & Welch, S. M., Data Repository for the University of Minnesota, 2017
DOI: 10.13020/D6S96X, https://doi.org/10.13020/D6S96X
Dataset