TY - JOUR
T1 - Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts
AU - Chin, Ya Huei
AU - Buda, Corneliu
AU - Neurock, Matthew
AU - Iglesia, Enrique
PY - 2013/10/16
Y1 - 2013/10/16
N2 - Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH4 react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to H-abstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cation-lattice oxygen pairs (Pd2+-O2-) in PdO. The charges in the CH3 and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*-covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd2+-O2- pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H3C··· Pd···H)⧧ transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH 3 •···*OH) ⧧ that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd 2+ and vicinal O2-, Pdox-Oox, cleave C-H bonds heterolytically via σ-bond metathesis, with Pd2+ adding to the C-H bond, while O2- abstracts the H-atom to form a four-center (H3Cδ-···Pd ox···Hδ+·· ·Oox)⧧ transition state without detectable Pdox reduction. The latter is much more stable than transition states on*-* and O*-O* pairs and give rise to a large increase in CH4 oxidation turnover rates at oxygen chemical potentials leading to Pd to PdO transitions. These distinct mechanistic pathways for C-H bond activation, inferred from theory and experiment, resemble those prevalent on organometallic complexes. Metal centers present on surfaces as well as in homogeneous complexes act as both nucleophile and electrophile in oxidative additions, ligands (e.g., O* on surfaces) abstract H-atoms via reductive deprotonation of C-H bonds, and metal-ligand pairs, with the pair as electrophile and the metal as nucleophile, mediate σ-bond metathesis pathways.
AB - Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH4 react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to H-abstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cation-lattice oxygen pairs (Pd2+-O2-) in PdO. The charges in the CH3 and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*-covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd2+-O2- pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H3C··· Pd···H)⧧ transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH 3 •···*OH) ⧧ that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd 2+ and vicinal O2-, Pdox-Oox, cleave C-H bonds heterolytically via σ-bond metathesis, with Pd2+ adding to the C-H bond, while O2- abstracts the H-atom to form a four-center (H3Cδ-···Pd ox···Hδ+·· ·Oox)⧧ transition state without detectable Pdox reduction. The latter is much more stable than transition states on*-* and O*-O* pairs and give rise to a large increase in CH4 oxidation turnover rates at oxygen chemical potentials leading to Pd to PdO transitions. These distinct mechanistic pathways for C-H bond activation, inferred from theory and experiment, resemble those prevalent on organometallic complexes. Metal centers present on surfaces as well as in homogeneous complexes act as both nucleophile and electrophile in oxidative additions, ligands (e.g., O* on surfaces) abstract H-atoms via reductive deprotonation of C-H bonds, and metal-ligand pairs, with the pair as electrophile and the metal as nucleophile, mediate σ-bond metathesis pathways.
UR - http://www.scopus.com/inward/record.url?scp=84886875556&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886875556&partnerID=8YFLogxK
U2 - 10.1021/ja405004m
DO - 10.1021/ja405004m
M3 - Article
C2 - 24083571
AN - SCOPUS:84886875556
SN - 0002-7863
VL - 135
SP - 15425
EP - 15442
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 41
ER -