Computing Arnol′d tongue scenarios

Frank Schilder, Bruce B. Peckham

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

A famous phenomenon in circle-maps and synchronisation problems leads to a two-parameter bifurcation diagram commonly referred to as the Arnol′d tongue scenario. One considers a perturbation of a rigid rotation of a circle, or a system of coupled oscillators. In both cases we have two natural parameters, the coupling strength and a detuning parameter that controls the rotation number/frequency ratio. The typical parameter plane of such systems has Arnol′d tongues with their tips on the decoupling line, opening up into the region where coupling is enabled, and in between these Arnol′d tongues, quasi-periodic arcs. In this paper, we present unified algorithms for computing both Arnol′d tongues and quasi-periodic arcs for both maps and ODEs. The algorithms generalise and improve on the standard methods for computing these objects. We illustrate our methods by numerically investigating the Arnol′d tongue scenario for representative examples, including the well-known Arnol′d circle map family, a periodically forced oscillator caricature, and a system of coupled Van der Pol oscillators.

Original languageEnglish (US)
Pages (from-to)932-951
Number of pages20
JournalJournal of Computational Physics
Volume220
Issue number2
DOIs
StatePublished - Jan 10 2007

Bibliographical note

Funding Information:
The authors are very grateful to Hinke M. Osinga for her careful reading of and her excellent comments on a draft of this paper. We thank the anonymous referees for their constructive comments that helped to improve this paper. B.B.P. thanks the University of Bristol for hospitality and general support during his sabbatical visit during Fall 2004. This work was supported by EPSRC Grant GR/R72020/01 and the NSF Grant DMS9973926.

Keywords

  • Arnol′d tongue
  • Invariant torus
  • Quasi-periodic arc
  • Synchronisation
  • Two-point boundary value problem

Fingerprint Dive into the research topics of 'Computing Arnol′d tongue scenarios'. Together they form a unique fingerprint.

Cite this