Computer-aided process planning for turned parts using fundamental and heuristic principles

U. P. Korde, B. C. Bora, K. A. Stelson, D. R. Riley

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


Research on generative computer-aided process planning (CAPP) for turned parts using combined fundamental and heuristic principles is presented. The rationale for the process planning approach is that many preconditions of machining processes can be expressed as a small number of domain principles. The domain is defined by processes and the part description as features for simple turned parts. The motivation is to detect faulty designs early on in the design process. Preliminary designs defined by features are first evaluated using manufacturability rules in a rule-based expert system, developed in LISP. Manufacturability rules are based on feature properties such as accessibility, stability, and critical material thickness. The rules were acquired from design and manufacturing personnel from industry through interviews. Parts that satisfy the manufacturability checks are used to generate all feasible process plans. A search algorithm selects the “best” process plan from the feasible set. Process plans are generated and subsequently optimized using two distinct sets of feasibility and optimality criteria which may be either fundamental or heuristic in nature. The presently incorporated criteria successfully restrict the set of plans to a small number without missing any apparently feasible process plans.Manufacturability evaluation, feasible process plans, and optimal process plans for actual industrial parts have been obtained and compared.

Original languageEnglish (US)
Pages (from-to)31-40
Number of pages10
JournalJournal of engineering for industry
Issue number1
StatePublished - 1992


Dive into the research topics of 'Computer-aided process planning for turned parts using fundamental and heuristic principles'. Together they form a unique fingerprint.

Cite this