Compressed sensing for wideband cognitive radios

Research output: Chapter in Book/Report/Conference proceedingConference contribution

550 Scopus citations

Abstract

In the emerging paradigm of open spectrum access, cognitive radios dynamically sense the radio-spectrum environment and must rapidly tune their transmitter parameters to efficiently utilize the available spectrum. The unprecedented radio agility envisioned, calls for fast and accurate spectrum sensing over a wide bandwidth, which challenges traditional spectral estimation methods typically operating at or above Nyquist rates. Capitalizing on the sparseness of the signal spectrum in open-access networks, this paper develops compressed sensing techniques tailored for the coarse sensing task of spectrum hole identification. Sub-Nyquist rate samples are utilized to detect and classify frequency bands via a waveletbased edge detector. Because spectrum location estimation takes priority over fine-scale signal reconstruction, the proposed novel sensing algorithms are robust to noise and can afford reduced sampling rates.

Original languageEnglish (US)
Title of host publication2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '07
DOIs
StatePublished - Aug 6 2007
Event2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '07 - Honolulu, HI, United States
Duration: Apr 15 2007Apr 20 2007

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume4
ISSN (Print)1520-6149

Other

Other2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '07
CountryUnited States
CityHonolulu, HI
Period4/15/074/20/07

Keywords

  • Cognitive radio
  • Compressed sensing
  • Spectrum estimation
  • Sub-Nyquist sampling
  • Wavelet transform

Fingerprint Dive into the research topics of 'Compressed sensing for wideband cognitive radios'. Together they form a unique fingerprint.

Cite this