Compositionally graded multilayer ceramic capacitors

Hyun Cheol Song, Jie E. Zhou, Deepam Maurya, Yongke Yan, Yu U. Wang, Shashank Priya

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters and power converters.

Original languageEnglish (US)
Article number12353
JournalScientific reports
Issue number1
StatePublished - Dec 1 2017
Externally publishedYes

Bibliographical note

Funding Information:
Financial support from DARPA MATRIX Program is acknowledged. The parallel computer simulations were performed on XSEDE supercomputers. D.M. and S.P. acknowledge the financial support from Office of basic energy science, department of energy (DE-FG02-06ER46290). Y.Y. acknowledges financial support from office of naval research through grant number (N00014-16-1-3043). Authors thanks AVX Corp. for the measurement on MLCC.

Publisher Copyright:
© 2017 The Author(s).


Dive into the research topics of 'Compositionally graded multilayer ceramic capacitors'. Together they form a unique fingerprint.

Cite this