Composition, variation, expression and evolution of low-molecular-weight glutenin subunit genes in Triticum urartu

Guangbin Luo, Xiaofei Zhang, Yanlin Zhang, Wenlong Yang, Yiwen Li, Jiazhu Sun, Kehui Zhan, Aimin Zhang, Dongcheng Liu

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


Background: Wheat (AABBDD, 2n = 6x = 42) is a major dietary component for many populations across the world. Bread-making quality of wheat is mainly determined by glutenin subunits, but it remains challenging to elucidate the composition and variation of low-molecular-weight glutenin subunits (LMW-GS) genes, the major components for glutenin subunits in hexaploid wheat. This problem, however, can be greatly simplified by characterizing the LMW-GS genes in Triticum urartu, the A-genome donor of hexaploid wheat. In the present study, we exploited the high-throughput molecular marker system, gene cloning, proteomic methods and molecular evolutionary genetic analysis to reveal the composition, variation, expression and evolution of LMW-GS genes in a T. urartu population from the Fertile Crescent region. Results: Eight LMW-GS genes, including four m-type, one s-type and three i-type, were characterized in the T. urartu population. Six or seven genes, the highest number at the Glu-A3 locus, were detected in each accession. Three i-type genes, each containing more than six allelic variants, were tightly linked because of their co-segregation in every accession. Only 2-3 allelic variants were detected for each m- and s-type gene. The m-type gene, TuA3-385, for which homologs were previously characterized only at Glu-D3 locus in common wheat and Aegilops tauschii, was detected at Glu-A3 locus in T. urartu. TuA3-460 was the first s-type gene identified at Glu-A3 locus. Proteomic analysis showed 1-4 genes, mainly i-type, expressed in individual accessions. About 62% accessions had three active i-type genes, rather than one or two in common wheat. Southeastern Turkey might be the center of origin and diversity for T. urartu due to its abundance of LMW-GS genes/genotypes. Phylogenetic reconstruction demonstrated that the characterized T. urartu might be the direct donor of the Glu-A3 locus in common wheat varieties. Conclusions: Compared with the Glu-A3 locus in common wheat, a large number of highly diverse LMW-GS genes and active genes were characterized in T. urartu, demonstrating that this progenitor might provide valuable genetic resources for LMW-GS genes to improve the quality of common wheat. The phylogenetic analysis provided molecular evidence and confirmed that T. urartu was the A-genome donor of hexaploid wheat.

Original languageEnglish (US)
Article number68
JournalBMC plant biology
Issue number1
StatePublished - Feb 28 2015

Bibliographical note

Funding Information:
The authors are grateful to M. Kathryn Turner, Department of Agronomy and Plant Genetics, University of Minnesota, for reviewing this manuscript. This work was supported by the National Science Foundation of China (31371610), the National Key Basic Research Program of China (2014CB138100) and the Ministry of Agriculture of China for transgenic research (2014ZX08009-003).

Publisher Copyright:
© Luo et al.


  • Evolution
  • Glu-A3
  • Low-molecular-weight glutenin subunits
  • Proteomics
  • Triticum urartu


Dive into the research topics of 'Composition, variation, expression and evolution of low-molecular-weight glutenin subunit genes in Triticum urartu'. Together they form a unique fingerprint.

Cite this