Complementary use of scalar, directional, and vector statistics with an application to surface winds

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Vector data are not uncommon in geography, and include examples such as transportation flows, particulate transport, and cartographic distortion. The directional and vector means and variances of these types of data are easily computed using a complex-arithmetic extension of the equations for scalar mean and variance. The January surface wind field over the contiguous United States provides an example with which to compare the information provided by scalar, directional and vector-based statistics. Spatial patterns of the mean and variance of January wind velocity (the wind vector) resemble patterns of wind speeds and directions but are not a simple superposition of the two, and one cannot necessarily infer the nature of the velocity field from separately computed salar and directional statistics. However, scalar and directional means and variances can lend insight into the features contributing to the velocity mean and variance. Scalar, directional, and vector-based analyses thus provide complementary methods with which to examine the spatial patterns of wind, or of any flow field that can be represented as a vector.

Original languageEnglish (US)
Pages (from-to)3-13
Number of pages11
JournalProfessional Geographer
Volume50
Issue number1
DOIs
StatePublished - Feb 1 1998

Keywords

  • Directional statistics
  • Surface wind field
  • Vector statistics

Fingerprint Dive into the research topics of 'Complementary use of scalar, directional, and vector statistics with an application to surface winds'. Together they form a unique fingerprint.

Cite this