Comparison of various filter media mixtures' hydraulic properties from a laboratory testing program

Research output: Contribution to journalConference article

Abstract

This paper describes the laboratory investigation of hydraulic properties in filter media mixtures designed for use in bioslopes along roadways. The accumulation of pollutants on roadways can result in contaminated stormwater runoff that has a negative effect on receiving water quality, groundwater quality, and aquatic ecosystems. Additionally, roadways increase impervious surface area resulting in an increase in runoff volume and peak discharge intensity. Therefore, current requirements focus on retention of the first inch (2.54 cm) of highway stormwater runoff. Current Minnesota Department of Transportation (MnDOT) specifications were developed using mixtures of clean sand and organic compost. However, mixtures of locally available organic materials in rural areas have not been tested. While there are industry-accepted methods of measuring infiltration rates in situ (i.e., the double ring infiltrometer and the modified Phillip-Dunne infiltrometer (MPDI)), there is no current standard for testing new mixtures on a smaller scale prior to field implementation. This project compares filter media mixtures to material passing current MnDOT specifications using a laboratory testing program. Laboratory constant and falling head tests were used to determine steady-state infiltration rate on samples using different combinations of various locally available organic material with screened sand or taconite tailings. Data from new filter media mixtures are compared to filter material passing current MnDOT specifications. Alternative media mixtures of peat, muck and taconite tailings were found to match the hydraulic conductivity of compost-sand mixtures. These results indicate that alternative media mixtures are suitable for stormwater biofiltration applications, allowing the authors to select mixtures for larger-scale field testing. Applying this laboratory testing program to previously untested filter media mixtures will allow for better design of filter media mixtures.

Original languageEnglish (US)
Pages (from-to)534-541
Number of pages8
JournalGeotechnical Special Publication
Issue numberGSP 276
DOIs
StatePublished - Jan 1 2017
EventGeotechnical Frontiers 2017 - Orlando, United States
Duration: Mar 12 2017Mar 15 2017

Fingerprint

hydraulic property
Hydraulics
filter
Testing
stormwater
infiltrometer
runoff
tailings
compost
sand
infiltration
Runoff
biofiltration
Sand
peak discharge
Tailings
Specifications
Infiltration
aquatic ecosystem
programme

Cite this

Comparison of various filter media mixtures' hydraulic properties from a laboratory testing program. / Swanson, J.; Saftner, D. A.; Teasley, R. L.

In: Geotechnical Special Publication, No. GSP 276, 01.01.2017, p. 534-541.

Research output: Contribution to journalConference article

@article{1172d4e2c61c46dc8091cbd97ec902ca,
title = "Comparison of various filter media mixtures' hydraulic properties from a laboratory testing program",
abstract = "This paper describes the laboratory investigation of hydraulic properties in filter media mixtures designed for use in bioslopes along roadways. The accumulation of pollutants on roadways can result in contaminated stormwater runoff that has a negative effect on receiving water quality, groundwater quality, and aquatic ecosystems. Additionally, roadways increase impervious surface area resulting in an increase in runoff volume and peak discharge intensity. Therefore, current requirements focus on retention of the first inch (2.54 cm) of highway stormwater runoff. Current Minnesota Department of Transportation (MnDOT) specifications were developed using mixtures of clean sand and organic compost. However, mixtures of locally available organic materials in rural areas have not been tested. While there are industry-accepted methods of measuring infiltration rates in situ (i.e., the double ring infiltrometer and the modified Phillip-Dunne infiltrometer (MPDI)), there is no current standard for testing new mixtures on a smaller scale prior to field implementation. This project compares filter media mixtures to material passing current MnDOT specifications using a laboratory testing program. Laboratory constant and falling head tests were used to determine steady-state infiltration rate on samples using different combinations of various locally available organic material with screened sand or taconite tailings. Data from new filter media mixtures are compared to filter material passing current MnDOT specifications. Alternative media mixtures of peat, muck and taconite tailings were found to match the hydraulic conductivity of compost-sand mixtures. These results indicate that alternative media mixtures are suitable for stormwater biofiltration applications, allowing the authors to select mixtures for larger-scale field testing. Applying this laboratory testing program to previously untested filter media mixtures will allow for better design of filter media mixtures.",
author = "J. Swanson and Saftner, {D. A.} and Teasley, {R. L.}",
year = "2017",
month = "1",
day = "1",
doi = "10.1061/9780784480434.058",
language = "English (US)",
pages = "534--541",
journal = "Geotechnical Special Publication",
issn = "0895-0563",
publisher = "American Society of Civil Engineers (ASCE)",
number = "GSP 276",

}

TY - JOUR

T1 - Comparison of various filter media mixtures' hydraulic properties from a laboratory testing program

AU - Swanson, J.

AU - Saftner, D. A.

AU - Teasley, R. L.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - This paper describes the laboratory investigation of hydraulic properties in filter media mixtures designed for use in bioslopes along roadways. The accumulation of pollutants on roadways can result in contaminated stormwater runoff that has a negative effect on receiving water quality, groundwater quality, and aquatic ecosystems. Additionally, roadways increase impervious surface area resulting in an increase in runoff volume and peak discharge intensity. Therefore, current requirements focus on retention of the first inch (2.54 cm) of highway stormwater runoff. Current Minnesota Department of Transportation (MnDOT) specifications were developed using mixtures of clean sand and organic compost. However, mixtures of locally available organic materials in rural areas have not been tested. While there are industry-accepted methods of measuring infiltration rates in situ (i.e., the double ring infiltrometer and the modified Phillip-Dunne infiltrometer (MPDI)), there is no current standard for testing new mixtures on a smaller scale prior to field implementation. This project compares filter media mixtures to material passing current MnDOT specifications using a laboratory testing program. Laboratory constant and falling head tests were used to determine steady-state infiltration rate on samples using different combinations of various locally available organic material with screened sand or taconite tailings. Data from new filter media mixtures are compared to filter material passing current MnDOT specifications. Alternative media mixtures of peat, muck and taconite tailings were found to match the hydraulic conductivity of compost-sand mixtures. These results indicate that alternative media mixtures are suitable for stormwater biofiltration applications, allowing the authors to select mixtures for larger-scale field testing. Applying this laboratory testing program to previously untested filter media mixtures will allow for better design of filter media mixtures.

AB - This paper describes the laboratory investigation of hydraulic properties in filter media mixtures designed for use in bioslopes along roadways. The accumulation of pollutants on roadways can result in contaminated stormwater runoff that has a negative effect on receiving water quality, groundwater quality, and aquatic ecosystems. Additionally, roadways increase impervious surface area resulting in an increase in runoff volume and peak discharge intensity. Therefore, current requirements focus on retention of the first inch (2.54 cm) of highway stormwater runoff. Current Minnesota Department of Transportation (MnDOT) specifications were developed using mixtures of clean sand and organic compost. However, mixtures of locally available organic materials in rural areas have not been tested. While there are industry-accepted methods of measuring infiltration rates in situ (i.e., the double ring infiltrometer and the modified Phillip-Dunne infiltrometer (MPDI)), there is no current standard for testing new mixtures on a smaller scale prior to field implementation. This project compares filter media mixtures to material passing current MnDOT specifications using a laboratory testing program. Laboratory constant and falling head tests were used to determine steady-state infiltration rate on samples using different combinations of various locally available organic material with screened sand or taconite tailings. Data from new filter media mixtures are compared to filter material passing current MnDOT specifications. Alternative media mixtures of peat, muck and taconite tailings were found to match the hydraulic conductivity of compost-sand mixtures. These results indicate that alternative media mixtures are suitable for stormwater biofiltration applications, allowing the authors to select mixtures for larger-scale field testing. Applying this laboratory testing program to previously untested filter media mixtures will allow for better design of filter media mixtures.

UR - http://www.scopus.com/inward/record.url?scp=85018770292&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85018770292&partnerID=8YFLogxK

U2 - 10.1061/9780784480434.058

DO - 10.1061/9780784480434.058

M3 - Conference article

SP - 534

EP - 541

JO - Geotechnical Special Publication

JF - Geotechnical Special Publication

SN - 0895-0563

IS - GSP 276

ER -