TY - JOUR
T1 - Comparison of Long-term Human Precision-cut Lung Slice Culture Methodology and Response to Challenge
T2 - An Argument for Standardisation
AU - Patel, Vivek
AU - Amin, Khalid
AU - Allen, David
AU - Ukishima, Lindsey
AU - Wahab, Adam
AU - Grodi, Chad
AU - Behrsing, Holger
N1 - Publisher Copyright:
© The Author(s) 2021.
PY - 2021/9
Y1 - 2021/9
N2 - As non-animal alternatives gain acceptance, a need for harmonised testing strategies has emerged. Arguably the most physiologically-relevant model for assessing potential respiratory toxicants, that based on human precision-cut lung slices (hPCLS) has been utilised in many laboratories, but a variety of culture methodologies are employed. In this pilot study, combinations of three different hPCLS culture methods (dynamic organ roller culture (DOC), air–liquid interface (ALI) and submersion) and various media (based on E-199, DMEM/F12 and RPMI-1640) were compared. The hPCLS were assessed in terms of their viability and responsiveness to challenge. The endpoints selected to compare the medium–method (M–M) combinations, which included histological features and viability, were evaluated at day 14 (D14) and day 28 (D28); protein and adenylate kinase (AK) content, and cytokine response to immunostimulants (lipopolysaccharide (LPS) at 5 μg/ml; polyinosinic:polycytidylic acid (Poly I:C) at 15 μg/ml) were evaluated at D28 only. Based on the set of endpoints assessed at D28, it was clear that certain culture conditions significantly affected the hPCLS, with the tissue retaining more of its native features and functionality (in terms of cytokine response) in some of the M–M combinations tested more than others. This pilot study indicates that the use of appropriate M–M combinations can help maintain the health and functional responses of hPCLS, and highlights the need for the standardisation of culture conditions in order to facilitate effective inter-laboratory comparisons and encourage greater acceptance by the regulatory community.
AB - As non-animal alternatives gain acceptance, a need for harmonised testing strategies has emerged. Arguably the most physiologically-relevant model for assessing potential respiratory toxicants, that based on human precision-cut lung slices (hPCLS) has been utilised in many laboratories, but a variety of culture methodologies are employed. In this pilot study, combinations of three different hPCLS culture methods (dynamic organ roller culture (DOC), air–liquid interface (ALI) and submersion) and various media (based on E-199, DMEM/F12 and RPMI-1640) were compared. The hPCLS were assessed in terms of their viability and responsiveness to challenge. The endpoints selected to compare the medium–method (M–M) combinations, which included histological features and viability, were evaluated at day 14 (D14) and day 28 (D28); protein and adenylate kinase (AK) content, and cytokine response to immunostimulants (lipopolysaccharide (LPS) at 5 μg/ml; polyinosinic:polycytidylic acid (Poly I:C) at 15 μg/ml) were evaluated at D28 only. Based on the set of endpoints assessed at D28, it was clear that certain culture conditions significantly affected the hPCLS, with the tissue retaining more of its native features and functionality (in terms of cytokine response) in some of the M–M combinations tested more than others. This pilot study indicates that the use of appropriate M–M combinations can help maintain the health and functional responses of hPCLS, and highlights the need for the standardisation of culture conditions in order to facilitate effective inter-laboratory comparisons and encourage greater acceptance by the regulatory community.
KW - animal replacement
KW - human hPCLS
KW - inhalation toxicology
KW - lung disease
KW - respiratory research
KW - tissue culture
UR - http://www.scopus.com/inward/record.url?scp=85122546833&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122546833&partnerID=8YFLogxK
U2 - 10.1177/02611929211061884
DO - 10.1177/02611929211061884
M3 - Article
C2 - 34836458
AN - SCOPUS:85122546833
SN - 0261-1929
VL - 49
SP - 209
EP - 222
JO - ATLA Alternatives to Laboratory Animals
JF - ATLA Alternatives to Laboratory Animals
IS - 5
ER -