Abstract
In this study, simulations using both the finite-rate chemistry (FRC)-LES and the flamelet/progress-variable (FPV)-LES approaches are conducted for a piloted partially premixed methane/air flame with high turbulence intensity. The two models have different spatial distributions of both time-averaged quantities and instantaneous flame field. For both axial and radial profiles of time-averaged statistics, the FPV-LES approach provides overall better prediction than FRC-LES, primarily due to the unity effective Lewis number under high turbulence intensity. To properly apply FRC in LES, a better transport model covering a broad range of turbulence intensity is required. In contrast, for conditional statistics, in which the effects of transport modeling are largely removed, the FRC-LES approach provides overall better predictions than FPV-LES for all quantities at most locations and mixture fractions.
Original language | English (US) |
---|---|
Title of host publication | AIAA Aerospace Sciences Meeting |
Publisher | American Institute of Aeronautics and Astronautics Inc, AIAA |
ISBN (Print) | 9781624105241 |
DOIs | |
State | Published - 2018 |
Externally published | Yes |
Event | AIAA Aerospace Sciences Meeting, 2018 - Kissimmee, United States Duration: Jan 8 2018 → Jan 12 2018 |
Publication series
Name | AIAA Aerospace Sciences Meeting, 2018 |
---|
Other
Other | AIAA Aerospace Sciences Meeting, 2018 |
---|---|
Country/Territory | United States |
City | Kissimmee |
Period | 1/8/18 → 1/12/18 |
Bibliographical note
Publisher Copyright:© 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.