Comparison of finite-rate chemistry and flamelet/progress-variable models II

Sandia Flame E

Suo Yang, Xingjian Wang, Vigor Yang, Wenting Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

In this study, simulations using both the finite-rate chemistry (FRC)-LES and the flamelet/progress-variable (FPV)-LES approaches are conducted for a piloted partially premixed methane/air flame with high turbulence intensity. The two models have different spatial distributions of both time-averaged quantities and instantaneous flame field. For both axial and radial profiles of time-averaged statistics, the FPV-LES approach provides overall better prediction than FRC-LES, primarily due to the unity effective Lewis number under high turbulence intensity. To properly apply FRC in LES, a better transport model covering a broad range of turbulence intensity is required. In contrast, for conditional statistics, in which the effects of transport modeling are largely removed, the FRC-LES approach provides overall better predictions than FPV-LES for all quantities at most locations and mixture fractions.

Original languageEnglish (US)
Title of host publicationAIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
Edition210059
ISBN (Print)9781624105241
DOIs
StatePublished - Jan 1 2018
EventAIAA Aerospace Sciences Meeting, 2018 - Kissimmee, United States
Duration: Jan 8 2018Jan 12 2018

Publication series

NameAIAA Aerospace Sciences Meeting, 2018
Number210059

Other

OtherAIAA Aerospace Sciences Meeting, 2018
CountryUnited States
CityKissimmee
Period1/8/181/12/18

Fingerprint

Turbulence
Statistics
Spatial distribution
Methane
Air

Cite this

Yang, S., Wang, X., Yang, V., & Sun, W. (2018). Comparison of finite-rate chemistry and flamelet/progress-variable models II: Sandia Flame E. In AIAA Aerospace Sciences Meeting (210059 ed.). (AIAA Aerospace Sciences Meeting, 2018; No. 210059). American Institute of Aeronautics and Astronautics Inc, AIAA. https://doi.org/10.2514/6.2018-1427

Comparison of finite-rate chemistry and flamelet/progress-variable models II : Sandia Flame E. / Yang, Suo; Wang, Xingjian; Yang, Vigor; Sun, Wenting.

AIAA Aerospace Sciences Meeting. 210059. ed. American Institute of Aeronautics and Astronautics Inc, AIAA, 2018. (AIAA Aerospace Sciences Meeting, 2018; No. 210059).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Yang, S, Wang, X, Yang, V & Sun, W 2018, Comparison of finite-rate chemistry and flamelet/progress-variable models II: Sandia Flame E. in AIAA Aerospace Sciences Meeting. 210059 edn, AIAA Aerospace Sciences Meeting, 2018, no. 210059, American Institute of Aeronautics and Astronautics Inc, AIAA, AIAA Aerospace Sciences Meeting, 2018, Kissimmee, United States, 1/8/18. https://doi.org/10.2514/6.2018-1427
Yang S, Wang X, Yang V, Sun W. Comparison of finite-rate chemistry and flamelet/progress-variable models II: Sandia Flame E. In AIAA Aerospace Sciences Meeting. 210059 ed. American Institute of Aeronautics and Astronautics Inc, AIAA. 2018. (AIAA Aerospace Sciences Meeting, 2018; 210059). https://doi.org/10.2514/6.2018-1427
Yang, Suo ; Wang, Xingjian ; Yang, Vigor ; Sun, Wenting. / Comparison of finite-rate chemistry and flamelet/progress-variable models II : Sandia Flame E. AIAA Aerospace Sciences Meeting. 210059. ed. American Institute of Aeronautics and Astronautics Inc, AIAA, 2018. (AIAA Aerospace Sciences Meeting, 2018; 210059).
@inproceedings{f84c51deb3bd4b7fb49181495cf9e2d5,
title = "Comparison of finite-rate chemistry and flamelet/progress-variable models II: Sandia Flame E",
abstract = "In this study, simulations using both the finite-rate chemistry (FRC)-LES and the flamelet/progress-variable (FPV)-LES approaches are conducted for a piloted partially premixed methane/air flame with high turbulence intensity. The two models have different spatial distributions of both time-averaged quantities and instantaneous flame field. For both axial and radial profiles of time-averaged statistics, the FPV-LES approach provides overall better prediction than FRC-LES, primarily due to the unity effective Lewis number under high turbulence intensity. To properly apply FRC in LES, a better transport model covering a broad range of turbulence intensity is required. In contrast, for conditional statistics, in which the effects of transport modeling are largely removed, the FRC-LES approach provides overall better predictions than FPV-LES for all quantities at most locations and mixture fractions.",
author = "Suo Yang and Xingjian Wang and Vigor Yang and Wenting Sun",
year = "2018",
month = "1",
day = "1",
doi = "10.2514/6.2018-1427",
language = "English (US)",
isbn = "9781624105241",
series = "AIAA Aerospace Sciences Meeting, 2018",
publisher = "American Institute of Aeronautics and Astronautics Inc, AIAA",
number = "210059",
booktitle = "AIAA Aerospace Sciences Meeting",
edition = "210059",

}

TY - GEN

T1 - Comparison of finite-rate chemistry and flamelet/progress-variable models II

T2 - Sandia Flame E

AU - Yang, Suo

AU - Wang, Xingjian

AU - Yang, Vigor

AU - Sun, Wenting

PY - 2018/1/1

Y1 - 2018/1/1

N2 - In this study, simulations using both the finite-rate chemistry (FRC)-LES and the flamelet/progress-variable (FPV)-LES approaches are conducted for a piloted partially premixed methane/air flame with high turbulence intensity. The two models have different spatial distributions of both time-averaged quantities and instantaneous flame field. For both axial and radial profiles of time-averaged statistics, the FPV-LES approach provides overall better prediction than FRC-LES, primarily due to the unity effective Lewis number under high turbulence intensity. To properly apply FRC in LES, a better transport model covering a broad range of turbulence intensity is required. In contrast, for conditional statistics, in which the effects of transport modeling are largely removed, the FRC-LES approach provides overall better predictions than FPV-LES for all quantities at most locations and mixture fractions.

AB - In this study, simulations using both the finite-rate chemistry (FRC)-LES and the flamelet/progress-variable (FPV)-LES approaches are conducted for a piloted partially premixed methane/air flame with high turbulence intensity. The two models have different spatial distributions of both time-averaged quantities and instantaneous flame field. For both axial and radial profiles of time-averaged statistics, the FPV-LES approach provides overall better prediction than FRC-LES, primarily due to the unity effective Lewis number under high turbulence intensity. To properly apply FRC in LES, a better transport model covering a broad range of turbulence intensity is required. In contrast, for conditional statistics, in which the effects of transport modeling are largely removed, the FRC-LES approach provides overall better predictions than FPV-LES for all quantities at most locations and mixture fractions.

UR - http://www.scopus.com/inward/record.url?scp=85044437591&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044437591&partnerID=8YFLogxK

U2 - 10.2514/6.2018-1427

DO - 10.2514/6.2018-1427

M3 - Conference contribution

SN - 9781624105241

T3 - AIAA Aerospace Sciences Meeting, 2018

BT - AIAA Aerospace Sciences Meeting

PB - American Institute of Aeronautics and Astronautics Inc, AIAA

ER -