TY - JOUR
T1 - Comparison of arterial pressure and plasma ANG II responses to three methods of subcutaneous ANG II administration
AU - Kuroki, Marcos T.
AU - Fink, Gregory D.
AU - Osborn, John W.
PY - 2014/9/1
Y1 - 2014/9/1
N2 - Angiotensin II (ANG II)-induced hypertension is a commonly studied model of experimental hypertension, particularly in rodents, and is often generated by subcutaneous delivery of ANG II using Alzet osmotic minipumps chronically implanted under the skin. We have observed that, in a subset of animals subjected to this protocol, mean arterial pressure (MAP) begins to decline gradually starting the second week of ANG II infusion, resulting in a blunting of the slow pressor response and reduced final MAP. We hypothesized that this variability in the slow pressor response to ANG II was mainly due to factors unique to Alzet pumps. To test this, we compared the pressure profile and changes in plasma ANG II levels during subcutaneous ANG II administration (150 ng•kg-1·min-1) using either Alzet minipumps, iPrecio implantable pumps, or a Harvard external infusion pump. At the end of 14 days of ANG II, MAP was highest in the iPrecio group (156 ± 3 mmHg) followed by Harvard (140 ± 3 mmHg) and Alzet (122 ± 3 mmHg) groups. The rate of the slow pressor response, measured as daily increases in pressure averaged over days 2-14 of ANG II, was similar between iPrecio and Harvard groups (2.7 ± 0.4 and 2.2 ± 0.4 mmHg/day) but was significantly blunted in the Alzet group (0.4 ± 0.4 mmHg/day) due to a gradual decline in MAP in a subset of rats. We also found differences in the temporal profile of plasma ANG II between infusion groups. We conclude that the gradual decline in MAP observed in a subset of rats during ANG II infusion using Alzet pumps is mainly due to pump-dependent factors when applied in this particular context.
AB - Angiotensin II (ANG II)-induced hypertension is a commonly studied model of experimental hypertension, particularly in rodents, and is often generated by subcutaneous delivery of ANG II using Alzet osmotic minipumps chronically implanted under the skin. We have observed that, in a subset of animals subjected to this protocol, mean arterial pressure (MAP) begins to decline gradually starting the second week of ANG II infusion, resulting in a blunting of the slow pressor response and reduced final MAP. We hypothesized that this variability in the slow pressor response to ANG II was mainly due to factors unique to Alzet pumps. To test this, we compared the pressure profile and changes in plasma ANG II levels during subcutaneous ANG II administration (150 ng•kg-1·min-1) using either Alzet minipumps, iPrecio implantable pumps, or a Harvard external infusion pump. At the end of 14 days of ANG II, MAP was highest in the iPrecio group (156 ± 3 mmHg) followed by Harvard (140 ± 3 mmHg) and Alzet (122 ± 3 mmHg) groups. The rate of the slow pressor response, measured as daily increases in pressure averaged over days 2-14 of ANG II, was similar between iPrecio and Harvard groups (2.7 ± 0.4 and 2.2 ± 0.4 mmHg/day) but was significantly blunted in the Alzet group (0.4 ± 0.4 mmHg/day) due to a gradual decline in MAP in a subset of rats. We also found differences in the temporal profile of plasma ANG II between infusion groups. We conclude that the gradual decline in MAP observed in a subset of rats during ANG II infusion using Alzet pumps is mainly due to pump-dependent factors when applied in this particular context.
KW - Alzet minipump
KW - Angiotensin II-salt hypertension
KW - Plasma angiotensin II
KW - Salt-sensitive hypertension
KW - iPrecio pump
UR - http://www.scopus.com/inward/record.url?scp=84906909906&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84906909906&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00922.2013
DO - 10.1152/ajpheart.00922.2013
M3 - Article
C2 - 24993045
AN - SCOPUS:84906909906
SN - 0363-6135
VL - 307
SP - H670-H679
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 5
ER -