Comparison of a prototype esophageal oximetry probe with two conventional digital pulse oximetry monitors in aortocoronary bypass patients

R. C. Prielipp, P. E. Scuderi, M. H. Hines, J. L. Atlee, J. F. Butterworth

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Pulse oximetry (SpO2) is the non-invasive standard for monitoring arterial oxygen saturation in patients undergoing anesthesia, but is subject to external interference by motion artifact, peripheral vasoconstriction, and low cardiac output. We hypothesized that oximetry signals could be acquired from the esophagus when peripheral pulse oximetry is unobtainable. Therefore, we tested an esophageal stethoscope which incorporates transverse oximetry photodetectors and emitters in patients undergoing coronary bypass surgery. Methods. Immediately after induction of general anesthesia in 10 coronary artery bypass (CABG) patients, Criticare and Nellcor digital probes were positioned on the left hand, concurrent with placement of an esophageal SpO2 probe. A computer recorded 5,910 matched oximetry signals every 15 sec during an average of 2.5 hrs. All SpO2 measurements were before, and immediately after non-pulsatile, hypothermic cardiopulmonary bypass. Data represent the percentage (median value [range]) of the total monitored time that a SpO2 value was displayed. Results. The Nellcor (99.8%, range 6.5-100%) and Criticare (99.7%, range 36.6-100%) acquired and displayed saturation signals more frequently (p = 0.003) than the esophageal monitor (75.3%, range 42.1-95.8%). The two standard digital oximeters had a mean difference of 0.9%, with a standard deviation of the differences of 0.9. The esophageal probe had a mean difference of -5.2% and -4.8%, with standard deviation of differences of 8.0 and 7.7 (compared to the Nellcor and Criticare monitors, respectively). A second-generation prototype shielded from electrocautery interference was tested in an additional 4 patients. The shielded prototype displayed signals more frequently (96.7%, range 68.4-100%) than the original esophageal prototype. Conclusions. Digital pulse oximetry failure is common in CABG patients, probably because of marginal cardiac output and peripheral vasoconstriction associated with hypothermia. Our study could not confirm that esophageal technology, which utilizes the esophagus as a site of transflectance oximetry, was superior to conventional digital pulse oximetry.

Original languageEnglish (US)
Pages (from-to)201-209
Number of pages9
JournalJournal of Clinical Monitoring and Computing
Volume16
Issue number3
DOIs
StatePublished - 2000

Bibliographical note

Funding Information:
This study was supported by an unrestricted educational grant from Aristo Medical, Waukesha, WI, which also provided the esophageal oximetry probes and Aristo 2101 oximeter for the study.

Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.

Keywords

  • Cardiac anesthesia
  • Esophagus
  • Monitoring
  • Oximetry
  • Oxygen saturation

Fingerprint

Dive into the research topics of 'Comparison of a prototype esophageal oximetry probe with two conventional digital pulse oximetry monitors in aortocoronary bypass patients'. Together they form a unique fingerprint.

Cite this