TY - JOUR
T1 - Comparing direct charge injection and Forster energy transfer into quantum dots in hybrid organic/inorganic quantum dot light emitting devices
AU - Kumar, Brijesh
AU - Hue, Ryan
AU - Gladfelter, Wayne L.
AU - Campbell, Stephen A.
PY - 2012/8
Y1 - 2012/8
N2 - Inorganic quantum dots (QDs) have excellent optoelectronic properties. But, due in part to a lack of a suitable medium for dispersion, they have not been extensively used in optoelectronic devices. With the advent of organic semiconductors, the integration of quantum dots into optoelectronic devices has become possible. Such devices are termed as hybrid organic/inorganic quantum dot light emitting devices. In hybrid organic/inorganic quantum dot light emitting devices, the mechanisms of charge and/or energy transfer into the quantum dots include Forster energy transfer and direct charge injection. Forster energy transfer involves formation of excitons on organic semiconductors, followed by an energy transfer onto the inorganic quantum dots, where the exciton recombines resulting in emission of a photon. Direct charge injection is the mechanism in which the electrons and holes are directly injected into the quantum dots and they recombine on the quantum dots to result in a photon. Which mechanism is operating in a device has been a subject of contention. In this work, by using various device configurations, we show that both these mechanisms can operate independently to maximize the quantum dot light emission in such devices.
AB - Inorganic quantum dots (QDs) have excellent optoelectronic properties. But, due in part to a lack of a suitable medium for dispersion, they have not been extensively used in optoelectronic devices. With the advent of organic semiconductors, the integration of quantum dots into optoelectronic devices has become possible. Such devices are termed as hybrid organic/inorganic quantum dot light emitting devices. In hybrid organic/inorganic quantum dot light emitting devices, the mechanisms of charge and/or energy transfer into the quantum dots include Forster energy transfer and direct charge injection. Forster energy transfer involves formation of excitons on organic semiconductors, followed by an energy transfer onto the inorganic quantum dots, where the exciton recombines resulting in emission of a photon. Direct charge injection is the mechanism in which the electrons and holes are directly injected into the quantum dots and they recombine on the quantum dots to result in a photon. Which mechanism is operating in a device has been a subject of contention. In this work, by using various device configurations, we show that both these mechanisms can operate independently to maximize the quantum dot light emission in such devices.
UR - http://www.scopus.com/inward/record.url?scp=84865243990&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84865243990&partnerID=8YFLogxK
U2 - 10.1063/1.4740234
DO - 10.1063/1.4740234
M3 - Article
AN - SCOPUS:84865243990
SN - 0021-8979
VL - 112
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 3
M1 - 034501
ER -