Comparative transcriptomics in the Triticeae

Andreas W. Schreiber, Tim Sutton, Rico A. Caldo, Elena Kalashyan, Ben Lovell, Gwenda Mayo, Gary J. Muehlbauer, Arnis Druka, Robbie Waugh, Roger P. Wise, Peter Langridge, Ute Baumann

Research output: Contribution to journalArticlepeer-review

54 Scopus citations


Background: Barley and particularly wheat are two grass species of immense agricultural importance. In spite of polyploidization events within the latter, studies have shown that genotypically and phenotypically these species are very closely related and, indeed, fertile hybrids can be created by interbreeding. The advent of two genome-scale Affymetrix GeneChips now allows studies of the comparison of their transcriptomes. Results: We have used the Wheat GeneChip to create a "gene expression atlas" for the wheat transcriptome (cv. Chinese Spring). For this, we chose mRNA from a range of tissues and developmental stages closely mirroring a comparable study carried out for barley (cv. Morex) using the Barley1 GeneChip. This, together with large-scale clustering of the probesets from the two GeneChips into "homologous groups", has allowed us to perform a genomic-scale comparative study of expression patterns in these two species. We explore the influence of the polyploidy of wheat on the results obtained with the Wheat GeneChip and quantify the correlation between conservation in gene sequence and gene expression in wheat and barley. In addition, we show how the conservation of expression patterns can be used to elucidate, probeset by probeset, the reliability of the Wheat GeneChip. Conclusion: While there are many differences in expression on the level of individual genes and tissues, we demonstrate that the wheat and barley transcriptomes appear highly correlated. This finding is significant not only because given small evolutionary distance between the two species it is widely expected, but also because it demonstrates that it is possible to use the two GeneChips for comparative studies. This is the case even though their probeset composition reflects rather different design principles as well as, of course, the present incomplete knowledge of the gene content of the two species. We also show that, in general, the Wheat GeneChip is not able to distinguish contributions from individual homoeologs. Furthermore, the comparison between the two species leads us to conclude that the conservation of both gene sequence as well as gene expression is positively correlated with absolute expression levels, presumably reflecting increased selection pressure on genes coding for proteins present at high levels. In addition, the results indicate the presence of a correlation between sequence and expression conservation within the Triticeae.

Original languageEnglish (US)
Article number285
JournalBMC Genomics
StatePublished - Jun 29 2009

Bibliographical note

Funding Information:
We would like to thank Prof. Y. Ogihara for providing us with the homoe-ologous sequences of (Mochida et al., 2003). Funding for this research was provided by USDA Initiative for Future Agriculture and Food Systems (IFAFS) grant no. 2001-52100-11346 (RPW), USDA-ARS CRIS Project 3625-21000-049-00D (RPW), the Grains Research and Development Corporation of Australia as well the Australian Research Council.


Dive into the research topics of 'Comparative transcriptomics in the Triticeae'. Together they form a unique fingerprint.

Cite this