Abstract
Five nonelectrolyte solution models are used to predict infinite dilution activity coefficients (γ∞) of five linear, four branched, and two cyclic alkanes in 67 solvents at 25 °C, and the results are compared with experimental data. The models use two distinct approaches to the prediction of γ∞. The solution of groups concept provides the basis for three versions of the UNIFAC model: original UNIFAC, γ∞-based UNIFAC, and modified UNIFAC (Dortmund). The MOSCED and the SPACE models avoid the group concept and use only pure component parameters. For a database of 737 limiting activity coefficients, the SPACE model gave an average absolute error of 8.1%, and in only 13.3% of the cases were the errors worse than 15%. The modified UNIFAC model gave an absolute average error of 9.8%, and 32% of the predicted γ∞ had errors larger than 15%. The SPACE approach also produced the most reliable estimations over a wide range of activity coefficient values.
Original language | English (US) |
---|---|
Pages (from-to) | 4104-4109 |
Number of pages | 6 |
Journal | Industrial and Engineering Chemistry Research |
Volume | 38 |
Issue number | 10 |
DOIs | |
State | Published - 1999 |