Combined optimal design and control of a near isothermal liquid piston air compressor/expander for a compressed air energy storage (CAES) system for wind turbines

Mohsen Saadat, Perry Y. Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations

Abstract

The key component of Compressed Air Energy Storage (CAES) system is an air compressor/expander. The roundtrip efficiency of this energy storage technology depends greatly on the efficiency of the air compressor/expander. There is a trade off between the thermal efficiency and power density of this component. Different ideas and approaches were introduced and studied in the previous works to improve this trade off by enhancing the heat transfer between air and its environment. In the present work, a combination of optimal compression/expansion rate, optimal chamber shape and optimal heat exchanger material distribution in the chamber is considered to maximize the power density of a compression/expansion chamber for a given desired efficiency. Results show that the power density can be improved by more than 20 folds if the optimal combination of flow rate, shape and porosity are used together.

Original languageEnglish (US)
Title of host publicationDiagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791857250
DOIs
StatePublished - 2015
EventASME 2015 Dynamic Systems and Control Conference, DSCC 2015 - Columbus, United States
Duration: Oct 28 2015Oct 30 2015

Publication series

NameASME 2015 Dynamic Systems and Control Conference, DSCC 2015
Volume2

Other

OtherASME 2015 Dynamic Systems and Control Conference, DSCC 2015
Country/TerritoryUnited States
CityColumbus
Period10/28/1510/30/15

Bibliographical note

Publisher Copyright:
© Copyright 2015 by ASME.

Fingerprint

Dive into the research topics of 'Combined optimal design and control of a near isothermal liquid piston air compressor/expander for a compressed air energy storage (CAES) system for wind turbines'. Together they form a unique fingerprint.

Cite this