TY - JOUR
T1 - Combinatorial effect of T-cell receptor ligation and CD45 isoform expression on the signaling contribution of the small GTpases Ras and Rap1
AU - Czyzyk, J.
AU - Leitenberg, D.
AU - Taylor, T.
AU - Bottomly, K.
PY - 2000
Y1 - 2000
N2 - By using ligands with various affinities for the T-cell receptor (TCR) and by altering the contribution of the CD45 tyrosine phosphatase, the effects of the potency of TCR-induced signals on the function of small GTPases Ras and Rap1 were studied. T cells expressing low-molecular-weight CD45 isoforms (e.g., CD45RO) exhibited the strongest activation of the Ras-dependent Elk-1 transcription factor and the highest sensitivity to the inhibitory action of dominant negative mutant Ras compared to T cells expressing high-molecular-weight CD45 isoforms (ABC). Moreover, stimulation of CD45RO+, but not CD45ABC+, T cells with a high-affinity TCR ligand induced suboptimal Elk-1 activation compared with the stimulation induced by an intermediate-affinity TCR-ligand interaction. This observation suggested that the Ras-dependent signaling pathway is safeguarded in CD45RO+ expressors by a negative regulatory mechanism(s) which prohibits maximal activation of the Ras-dependent signaling events following high-avidity TCR-ligand engagement. Interestingly, the biochemical activity of another small GTPase, the Ras-like protein Rap1, which has been implicated in the functional suppression of Ras signaling, was inversely correlated with the extent of Elk-1 activation induced by different-affinity TCR ligands. Consistently, overexpression of putative Rap dominant negative mutant RapN17 or the physiologic inhibitor of Rap1, the Rap GTPase-activating protein RapGAP, augmented the Elk-1 response in CD45RO+ T cells. This is in contrast to the suppressive effect of RapN17 and RapGAP on CD45ABC+ T cells, underscoring the possibility that Rap1 can act as either a repressor or a potentiator of Ras effector signals, depending on CD45 isoform expression. These observations suggest that cells expressing distinct isoforms of CD45 employ different signal transduction schemes to optimize Ras-mediated signal transduction in activated T lymphocytes.
AB - By using ligands with various affinities for the T-cell receptor (TCR) and by altering the contribution of the CD45 tyrosine phosphatase, the effects of the potency of TCR-induced signals on the function of small GTPases Ras and Rap1 were studied. T cells expressing low-molecular-weight CD45 isoforms (e.g., CD45RO) exhibited the strongest activation of the Ras-dependent Elk-1 transcription factor and the highest sensitivity to the inhibitory action of dominant negative mutant Ras compared to T cells expressing high-molecular-weight CD45 isoforms (ABC). Moreover, stimulation of CD45RO+, but not CD45ABC+, T cells with a high-affinity TCR ligand induced suboptimal Elk-1 activation compared with the stimulation induced by an intermediate-affinity TCR-ligand interaction. This observation suggested that the Ras-dependent signaling pathway is safeguarded in CD45RO+ expressors by a negative regulatory mechanism(s) which prohibits maximal activation of the Ras-dependent signaling events following high-avidity TCR-ligand engagement. Interestingly, the biochemical activity of another small GTPase, the Ras-like protein Rap1, which has been implicated in the functional suppression of Ras signaling, was inversely correlated with the extent of Elk-1 activation induced by different-affinity TCR ligands. Consistently, overexpression of putative Rap dominant negative mutant RapN17 or the physiologic inhibitor of Rap1, the Rap GTPase-activating protein RapGAP, augmented the Elk-1 response in CD45RO+ T cells. This is in contrast to the suppressive effect of RapN17 and RapGAP on CD45ABC+ T cells, underscoring the possibility that Rap1 can act as either a repressor or a potentiator of Ras effector signals, depending on CD45 isoform expression. These observations suggest that cells expressing distinct isoforms of CD45 employ different signal transduction schemes to optimize Ras-mediated signal transduction in activated T lymphocytes.
UR - http://www.scopus.com/inward/record.url?scp=0034459505&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034459505&partnerID=8YFLogxK
U2 - 10.1128/MCB.20.23.8740-8747.2000
DO - 10.1128/MCB.20.23.8740-8747.2000
M3 - Article
C2 - 11073975
AN - SCOPUS:0034459505
SN - 0270-7306
VL - 20
SP - 8740
EP - 8747
JO - Molecular and cellular biology
JF - Molecular and cellular biology
IS - 23
ER -