TY - JOUR
T1 - Cofactor-type inhibitors of inosine monophosphate dehydrogenase via modular approach
T2 - Targeting the pyrophosphate binding sub-domain
AU - Felczak, Krzysztof
AU - Chen, Liqiang
AU - Wilson, Daniel
AU - Williams, Jessica
AU - Vince, Robert
AU - Petrelli, Riccardo
AU - Jayaram, Hiremagalur N.
AU - Kusumanchi, Praveen
AU - Kumar, Mohineesh
AU - Pankiewicz, Krzysztof W.
N1 - Funding Information:
This research was supported by the Center for Drug Design in the Academic Health Center of the University of Minnesota and by the Veterans Affairs Merit Review Awards (HNJ).
Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2011/3/1
Y1 - 2011/3/1
N2 - Cofactor-type inhibitors of inosine monophosphate dehydrogenase (IMPDH) that target the nicotinamide adenine dinucleotide (NAD) binding domain of the enzyme are modular in nature. They interact with the three sub-sites of the cofactor binding domain; the nicotinamide monophosphate (NMN) binding sub-site (N sub-site), the adenosine monophosphate (AMP) binding sub-site (A sub-site), and the pyrophosphate binding sub-site (P sub-site or P-groove). Mycophenolic acid (MPA) shows high affinity to the N sub-site of human IMPDH mimicking NMN binding. We found that the attachment of adenosine to the MPA through variety of linkers afforded numerous mycophenolic adenine dinucleotide (MAD) analogues that inhibit the two isoforms of the human enzyme in low nanomolar to low micromolar range. An analogue 4, in which 2-ethyladenosine is attached to the mycophenolic alcohol moiety through the difluoromethylenebis(phosphonate) linker, was found to be a potent inhibitor of hIMPDH1 (K i = 5 nM), and one of the most potent, sub-micromolar inhibitor of leukemia K562 cells proliferation (IC 50 = 0.45 μM). Compound 4 was as potent as Gleevec (IC 50 = 0.56 μM) heralded as a 'magic bullet' against chronic myelogenous leukemia (CML). MAD analogues 7 and 8 containing an extended ethylenebis(phosphonate) linkage showed low nanomolar inhibition of IMPDH and low micromolar inhibition of K562 cells proliferation. Some novel MAD analogues described herein containing linkers of different length and geometry were found to inhibit IMPDH with K i's lower than 100 nM. Thus, such linkers can be used for connection of other molecular fragments with high affinity to the N- and A-sub-site of IMPDH.
AB - Cofactor-type inhibitors of inosine monophosphate dehydrogenase (IMPDH) that target the nicotinamide adenine dinucleotide (NAD) binding domain of the enzyme are modular in nature. They interact with the three sub-sites of the cofactor binding domain; the nicotinamide monophosphate (NMN) binding sub-site (N sub-site), the adenosine monophosphate (AMP) binding sub-site (A sub-site), and the pyrophosphate binding sub-site (P sub-site or P-groove). Mycophenolic acid (MPA) shows high affinity to the N sub-site of human IMPDH mimicking NMN binding. We found that the attachment of adenosine to the MPA through variety of linkers afforded numerous mycophenolic adenine dinucleotide (MAD) analogues that inhibit the two isoforms of the human enzyme in low nanomolar to low micromolar range. An analogue 4, in which 2-ethyladenosine is attached to the mycophenolic alcohol moiety through the difluoromethylenebis(phosphonate) linker, was found to be a potent inhibitor of hIMPDH1 (K i = 5 nM), and one of the most potent, sub-micromolar inhibitor of leukemia K562 cells proliferation (IC 50 = 0.45 μM). Compound 4 was as potent as Gleevec (IC 50 = 0.56 μM) heralded as a 'magic bullet' against chronic myelogenous leukemia (CML). MAD analogues 7 and 8 containing an extended ethylenebis(phosphonate) linkage showed low nanomolar inhibition of IMPDH and low micromolar inhibition of K562 cells proliferation. Some novel MAD analogues described herein containing linkers of different length and geometry were found to inhibit IMPDH with K i's lower than 100 nM. Thus, such linkers can be used for connection of other molecular fragments with high affinity to the N- and A-sub-site of IMPDH.
KW - Bis(phosphonates)
KW - IMPDH
KW - Inhibitor design
KW - Mycophenolic acid
KW - NAD analogues
UR - http://www.scopus.com/inward/record.url?scp=79952192915&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79952192915&partnerID=8YFLogxK
U2 - 10.1016/j.bmc.2011.01.042
DO - 10.1016/j.bmc.2011.01.042
M3 - Article
C2 - 21324702
AN - SCOPUS:79952192915
SN - 0968-0896
VL - 19
SP - 1594
EP - 1605
JO - Bioorganic and Medicinal Chemistry
JF - Bioorganic and Medicinal Chemistry
IS - 5
ER -