## Abstract

We establish a link between certain Whittaker coefficients of the generalized metaplectic theta functions, first studied by Kazhdan and Patterson [Kazhdan and Patterson, Metaplectic forms, Inst. Hauteś Etudes Sci. Publ. Math., (59): 35-142, 1984], and the coefficients of stable Weyl group multiple Dirichlet series defined in [Brubaker, Bump, Friedberg,Weyl groupmultiple Dirichlet series. II. The stable case. Invent. Math., 165(2):325-355, 2006]. The generalized theta functions are the residues of Eisenstein series on a metaplectic n-fold cover of the general linear group. For n sufficiently large, we consider different Whittaker coefficients for such a theta function which lie in the orbit of Hecke operators at a given prime p. These are shown to be equal (up to an explicit constant) to the p-power supported coefficients of aWeyl group multiple Dirichlet series (MDS). These MDS coefficients are described in terms of the underlying root system; they have also recently been identified as the values of a p-adic Whittaker function attached to an unramified principal series representation on the metaplectic cover of the general linear group.

Original language | English (US) |
---|---|

Pages (from-to) | 83-95 |

Number of pages | 13 |

Journal | Springer Proceedings in Mathematics |

Volume | 9 |

DOIs | |

State | Published - 2012 |

Externally published | Yes |

### Bibliographical note

Funding Information:This work was supported by NSF grants DMS-0844185, DMS-1001079 and DMS-1001326, NSF FRG grants DMS-0652817, DMS-0652609, and DMS-0652312, and by NSA grant H98230-10-1-0183.