Coarsening of metal oxide nanoparticles

Gerko Oskam, Zeshan Hu, R. Lee Penn, Noshir Pesika, Peter C. Searson

Research output: Contribution to journalArticlepeer-review

134 Scopus citations


In solution phase synthesis of nanoparticles, processes such as coarsening and aggregation can compete with nucleation and growth in modifying the particle size distribution in the system. We show that coarsening of ZnO and [formula presented] nanoparticles in solution follows the Lifshitz-Slyozov-Wagner rate law for diffusion controlled coarsening originally derived for colloidal systems with micrometer-sized particles, where the average particle size cubed is proportional to time. The rate constant for growth of ZnO in propanol is in the range [formula presented] and is dependent on the precursor anion and temperature. The coarsening of [formula presented] nanoparticles from aqueous Ti(IV) alkoxide solutions is slower due to the low solubility of [formula presented] with the rate constant in the range [formula presented] for temperatures between 150 °C and 220 °C. Epitaxial attachment of [formula presented] particles becomes significant at higher temperatures and longer times. We show that the dominant parameters controlling the coarsening kinetics are solvent, precursor salt, and temperature.

Original languageEnglish (US)
JournalPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Issue number1
StatePublished - Jul 24 2002
Externally publishedYes

Bibliographical note

Copyright 2017 Elsevier B.V., All rights reserved.


Dive into the research topics of 'Coarsening of metal oxide nanoparticles'. Together they form a unique fingerprint.

Cite this