Coarsening following a morphological instability in the one-sided model

Jorge Viñals, David Jasnow

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


We study the coarsening of the interfacial pattern separating two coexisting phases after the pattern becomes morphologically unstable. Shortly after the instability, the scale of the structure is given by the most unstable wave number in the linear regime. At later times, nonlinear interactions cause the structure to coarsen. Coarsening is studied by monitoring the time dependence of the two-dimensional power spectrum of the pattern, especially for wave vectors transverse to the direction of growth. Characteristic length scales of the pattern obtained from moments of the power spectrum are asymptotically linear in time. Furthermore, the power spectrum is seen to satisfy a scaling relation, in agreement with previous studies. A normal-velocity autocorrelation function is calculated and found to decay substantially over length scales that are of the order of the scale of the pattern. The issue of spatial anisotropy in the correlation functions is also discussed.

Original languageEnglish (US)
Pages (from-to)7777-7782
Number of pages6
JournalPhysical Review A
Issue number12
StatePublished - 1992


Dive into the research topics of 'Coarsening following a morphological instability in the one-sided model'. Together they form a unique fingerprint.

Cite this