Co-evolution of riparian vegetation and channel dynamics in an aggrading braided river system, Mount Pinatubo, Philippines

Karen B Gran, Michal Tal, Emily D. Wartman

Research output: Contribution to journalArticlepeer-review

36 Scopus citations


Increased bank stability by riparian vegetation can have profound impacts on channel morphology and dynamics in low-energy systems, but the effects are less clear in high-energy environments. Here we investigate the role of vegetation in active, aggrading braided systems at Mount Pinatubo, Philippines, and compare results with numerical modeling results. Gradual reductions in post-eruption sediment loads have reduced bed reworking rates, allowing vegetation to finally persist year-round on the Pasig-Potrero and Sacobia Rivers. From 2009-2011 we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into the RipRoot model and BSTEM (Bank Stability and Toe Erosion Model) shows cohesion due to roots increases from zero in unvegetated conditions to > 10·2 kPa in densely-growing grasses. Field-based parameters were incorporated into a cellular model comparing vegetation strength and sediment mobility effects on braided channel dynamics. The model shows both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. The competing influence of vegetation strength versus channel dynamics is a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. An estimated T* between 1·5 and 2·3 for the Pasig-Potrero River suggests channels are still very mobile and likely to remain braided until aggradation rates decline further. Vegetation does have an important effect on channel dynamics, however, by focusing flow and thus aggradation into the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. The future trajectory of channel-vegetation interactions as sedimentation rates decline is complicated by strong seasonal variability in precipitation and sediment loads, driving incision and armoring in the dry season. By 2011, incision during the dry season was substantial enough to lower the water-table, weaken existing vegetation, and allow for vegetation removal in future avulsions.

Original languageEnglish (US)
Pages (from-to)1101-1115
Number of pages15
JournalEarth Surface Processes and Landforms
Issue number8
StatePublished - Jun 30 2015


  • Aggradation
  • Avulsion
  • Braided river
  • Pinatubo
  • Vegetation

Fingerprint Dive into the research topics of 'Co-evolution of riparian vegetation and channel dynamics in an aggrading braided river system, Mount Pinatubo, Philippines'. Together they form a unique fingerprint.

Cite this