Clustering Human Mobility with Multiple Spaces

Haoji Hu, Haowen Lin, Yao Yi Chiang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Human mobility clustering is an important problem for understanding human mobility behaviors (e.g., work and school commutes). Existing methods typically contain two steps: choosing/learning a mobility representation and applying a clustering algorithm to the representation. However, these methods rely on strict visiting orders in trajectories and cannot take advantage of multiple types of mobility representations. This paper proposes a novel mobility clustering method for mobility behavior detection. First, the proposed method contains a permutation-equivalent operation to handle sub-trajectories that might have different visiting orders but similar impacts on mobility behaviors. Second, the proposed method utilizes a variational autoencoder architecture to simultaneously perform clustering in both latent and original spaces. Also, in order to handle the bias of a single latent space, our clustering assignment prediction considers multiple learned latent spaces at different epochs. This way, the proposed method produces accurate results and can provide reliability estimates of each trajectory's cluster assignment. The experiment shows that the proposed method outperformed state-of-the-art methods in mobility behavior detection from trajectories with better accuracy and more interpretability.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022
EditorsShusaku Tsumoto, Yukio Ohsawa, Lei Chen, Dirk Van den Poel, Xiaohua Hu, Yoichi Motomura, Takuya Takagi, Lingfei Wu, Ying Xie, Akihiro Abe, Vijay Raghavan
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages575-584
Number of pages10
ISBN (Electronic)9781665480451
DOIs
StatePublished - 2022
Event2022 IEEE International Conference on Big Data, Big Data 2022 - Osaka, Japan
Duration: Dec 17 2022Dec 20 2022

Publication series

NameProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022

Conference

Conference2022 IEEE International Conference on Big Data, Big Data 2022
Country/TerritoryJapan
CityOsaka
Period12/17/2212/20/22

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

Fingerprint

Dive into the research topics of 'Clustering Human Mobility with Multiple Spaces'. Together they form a unique fingerprint.

Cite this