Abstract
Human mobility clustering is an important problem for understanding human mobility behaviors (e.g., work and school commutes). Existing methods typically contain two steps: choosing/learning a mobility representation and applying a clustering algorithm to the representation. However, these methods rely on strict visiting orders in trajectories and cannot take advantage of multiple types of mobility representations. This paper proposes a novel mobility clustering method for mobility behavior detection. First, the proposed method contains a permutation-equivalent operation to handle sub-trajectories that might have different visiting orders but similar impacts on mobility behaviors. Second, the proposed method utilizes a variational autoencoder architecture to simultaneously perform clustering in both latent and original spaces. Also, in order to handle the bias of a single latent space, our clustering assignment prediction considers multiple learned latent spaces at different epochs. This way, the proposed method produces accurate results and can provide reliability estimates of each trajectory's cluster assignment. The experiment shows that the proposed method outperformed state-of-the-art methods in mobility behavior detection from trajectories with better accuracy and more interpretability.
Original language | English (US) |
---|---|
Title of host publication | Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022 |
Editors | Shusaku Tsumoto, Yukio Ohsawa, Lei Chen, Dirk Van den Poel, Xiaohua Hu, Yoichi Motomura, Takuya Takagi, Lingfei Wu, Ying Xie, Akihiro Abe, Vijay Raghavan |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 575-584 |
Number of pages | 10 |
ISBN (Electronic) | 9781665480451 |
DOIs | |
State | Published - 2022 |
Event | 2022 IEEE International Conference on Big Data, Big Data 2022 - Osaka, Japan Duration: Dec 17 2022 → Dec 20 2022 |
Publication series
Name | Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022 |
---|
Conference
Conference | 2022 IEEE International Conference on Big Data, Big Data 2022 |
---|---|
Country/Territory | Japan |
City | Osaka |
Period | 12/17/22 → 12/20/22 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.