Classifying Subjects with PFC Lesions from Healthy Controls during Working Memory Encoding via Graph Convolutional Networks

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

This paper describes a group-level classification of 14 patients with prefrontal cortex (pFC) lesions from 20 healthy controls using multi-layer graph convolutional networks (GCN) with features inferred from the scalp EEG recorded from the encoding phase of working memory (WM) trials. We first construct undirected and directed graphs to represent the WM encoding for each trial for each subject using distance correlation- based functional connectivity measures and differential directed information-based effective connectivity measures, respectively. Centrality measures of betweenness centrality, eigenvector centrality, and closeness centrality are inferred for each of the 64 channels from the brain connectivity. Along with the three centrality measures, each graph uses the relative band powers in the five frequency bands - delta, theta, alpha, beta, and gamma- as node features. The summarized graph representation is learned using two layers of GCN followed by mean pooling, and fully connected layers are used for classification. The final class label for a subject is decided using majority voting based on the results from all the subject's trials. The GCN-based model can correctly classify 28 of the 34 subjects (82.35% accuracy) with undirected edges represented by functional connectivity measure of distance correlation and classify all 34 subjects (100% accuracy) with directed edges characterized by effective connectivity measure of differential directed information.

Original languageEnglish (US)
Title of host publication11th International IEEE/EMBS Conference on Neural Engineering, NER 2023 - Proceedings
PublisherIEEE Computer Society
ISBN (Electronic)9781665462921
DOIs
StatePublished - 2023
Event11th International IEEE/EMBS Conference on Neural Engineering, NER 2023 - Baltimore, United States
Duration: Apr 25 2023Apr 27 2023

Publication series

NameInternational IEEE/EMBS Conference on Neural Engineering, NER
Volume2023-April
ISSN (Print)1948-3546
ISSN (Electronic)1948-3554

Conference

Conference11th International IEEE/EMBS Conference on Neural Engineering, NER 2023
Country/TerritoryUnited States
CityBaltimore
Period4/25/234/27/23

Bibliographical note

Funding Information:
This paper was supported in part by the National Science Foundation under grant number CCF-1954749.

Publisher Copyright:
© 2023 IEEE.

Keywords

  • brain connectivity
  • graph convolutional networks (GCN)
  • prefrontal cortex (pFC)
  • working memory task

Fingerprint

Dive into the research topics of 'Classifying Subjects with PFC Lesions from Healthy Controls during Working Memory Encoding via Graph Convolutional Networks'. Together they form a unique fingerprint.

Cite this