Classical biological control for the protection of natural ecosystems

R. G. Van Driesche, R. I. Carruthers, T. Center, M. S. Hoddle, J. Hough-Goldstein, L. Morin, L. Smith, D. L. Wagner, B. Blossey, V. Brancatini, R. Casagrande, C. E. Causton, J. A. Coetzee, J. Cuda, J. Ding, S. V. Fowler, J. H. Frank, R. Fuester, J. Goolsby, M. GrodowitzT. A. Heard, M. P. Hill, J. H. Hoffmann, J. Huber, M. Julien, M. T.K. Kairo, M. Kenis, P. Mason, J. Medal, R. Messing, R. Miller, A. Moore, P. Neuenschwander, R. Newman, H. Norambuena, W. A. Palmer, R. Pemberton, A. Perez Panduro, P. D. Pratt, M. Rayamajhi, S. Salom, D. Sands, S. Schooler, M. Schwarzländer, A. Sheppard, R. Shaw, P. W. Tipping, R. D. van Klinken

Research output: Contribution to journalReview articlepeer-review

227 Scopus citations


Of the 70 cases of classical biological control for the protection of nature found in our review, there were fewer projects against insect targets (21) than against invasive plants (49), in part, because many insect biological control projects were carried out against agricultural pests, while nearly all projects against plants targeted invasive plants in natural ecosystems. Of 21 insect projects, 81% (17) provided benefits to protection of biodiversity, while 48% (10) protected products harvested from natural systems, and 5% (1) preserved ecosystem services, with many projects contributing to more than one goal. In contrast, of the 49 projects against invasive plants, 98% (48) provided benefits to protection of biodiversity, while 47% (23) protected products, and 25% (12) preserved ecosystem services, again with many projects contributing to several goals. We classified projects into complete control (pest generally no longer important), partial control (control in some areas but not others), and " in progress," for projects in development for which outcomes do not yet exist. For insects, of the 21 projects discussed, 62% (13) achieved complete control of the target pest, 19% (4) provided partial control, and 43% (9) are still in progress. By comparison, of the 49 invasive plant projects considered, 27% (13) achieved complete control, while 33% (16) provided partial control, and 49% (24) are still in progress. For both categories of pests, some projects' success ratings were scored twice when results varied by region. We found approximately twice as many projects directed against invasive plants than insects and that protection of biodiversity was the most frequent benefit of both insect and plant projects. Ecosystem service protection was provided in the fewest cases by either insect or plant biological control agents, but was more likely to be provided by projects directed against invasive plants, likely because of the strong effects plants exert on landscapes. Rates of complete success appeared to be higher for insect than plant targets (62% vs 27%), perhaps because most often herbivores gradually weaken, rather than outright kill, their hosts, which is not the case for natural enemies directed against pest insects. For both insect and plant biological control, nearly half of all projects reviewed were listed as currently in progress, suggesting that the use of biological control for the protection of wildlands is currently very active.

Original languageEnglish (US)
Pages (from-to)S2-S33
JournalBiological Control
Issue numberSUPPL. 1
StatePublished - Aug 2010


  • Biological control
  • Ecological restoration
  • Ecosystem function
  • Insect pests
  • Invasive plants
  • Invasive species
  • Natural ecosystems


Dive into the research topics of 'Classical biological control for the protection of natural ecosystems'. Together they form a unique fingerprint.

Cite this