Circulating acylcarnitine profile in human heart failure: A surrogate of fatty acid metabolic dysregulation in mitochondria and beyond

Matthieu Ruiz, François Labarthe, Annik Fortier, Bertrand Bouchard, Julie Thompson Legault, Virginie Bolduc, Odile Rigal, Jane Chen, Anique Ducharme, Peter A. Crawford, Jean Claude Tardif, Christine Des Rosiers

Research output: Contribution to journalArticlepeer-review

86 Scopus citations


Heart failure (HF) is associated with metabolic perturbations, particularly of fatty acids (FAs), which remain to be better understood in humans. This study aimed at testing the hypothesis that HF patients with reduced ejection fraction display systemic perturbations in levels of energy-related metabolites, especially those reflecting dysregulation of FA metabolism, namely, acylcarnitines (ACs). Circulating metabolites were assessed using mass spectrometry (MS)-based methods in two cohorts. The main cohort consisted of 72 control subjects and 68 HF patients exhibiting depressed left ventricular ejection fraction (25.9 ± 6.9%) and mostly of ischemic etiology with ≥2 comorbidities. HF patients displayed marginal changes in plasma levels of tricarboxylic acid cycle-related metabolites or indexes of mitochondrial or cytosolic redox status. They had, however, 22-79% higher circulating ACs, irrespective of chain length (P < 0.0001, adjusted for sex, age, renal function, and insulin resistance, determined by shotgun MS/MS), which reflects defective mitochondrial β-oxidation, and were significantly associated with levels of NH2-terminal pro-B-type natriuretic peptide levels, a disease severity marker. Subsequent extended liquid chromatography-tandem MS analysis of 53 plasma ACs in a subset group from the primary cohort confirmed and further substantiated with a comprehensive lipidomic analysis in a validation cohort revealed in HF patients a more complex circulating AC profile. The latter included dicarboxylic-ACs and dihydroxy-ACs as well as very long chain (VLC) ACs or sphingolipids with VLCFAs (>20 carbons), which are proxies of dysregulated FA metabolism in peroxisomes. Our study identified alterations in circulating ACs in HF patients that are independent of biological traits and associated with disease severity markers. These alterations reflect dysfunctional FA metabolism in mitochondria but also beyond, namely, in peroxisomes, suggesting a novel mechanism contributing to global lipid perturbations in human HF.

Original languageEnglish (US)
Pages (from-to)768-781
Number of pages14
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Issue number4
StatePublished - Oct 11 2017

Bibliographical note

Funding Information:
This study was supported by Canadian Institutes of Health Research Grant 9575 (to C. Des Rosiers), the Montreal Heart Institute Foundation, and the Canadian Foundation for Innovation (to J.-C. Tardif and C. Des Rosiers). A. Ducharme was supported by the Fonds de Recherche en Santé du Québec. J.-C. Tardif holds the Canada Research Chair in translational and personalized medicine and the Université de Montréal Pfizer-endowed research chair in atherosclerosis.

Publisher Copyright:
© 2017 the American Physiological Society.


  • Acylcarnitines
  • Heart failure
  • Lipid oxidation
  • Metabolomics
  • Peroxisomes


Dive into the research topics of 'Circulating acylcarnitine profile in human heart failure: A surrogate of fatty acid metabolic dysregulation in mitochondria and beyond'. Together they form a unique fingerprint.

Cite this