Abstract
Whether DNA damage caused by cigarette smoke leads to repair or apoptosis has not been fully elucidated. The current study demonstrates that cigarette smoke induces single-strand DNA damage in human bronchial epithelial cells. Cigarette smoke also stimulated caspase 3 precursors as well as intact poly (ADP-ribose) polymerase (PARP) production, but did not activate caspase 3 or cleave PARP, while the alkaloid camptothecin did so. Neither apoptosis nor necrosis was induced by cigarette smoke when the insult was removed within a designated time period. In contrast, DNA damage following cigarette smoke exposure was repaired as evidenced by decreasing terminal dUTP-biotin nick-end labeling positivity. The PARP inhibitor, 3-aminobenzamide blocked this repair. Furthermore, cells subjected to DNA damage were able to survive and proliferate clonogenically when changed to smoke-free conditions. These results suggest that cigarette smoke-induced DNA damage in bronchial epithelial cells is not necessarily lethal, and that PARP functions in the repair process. Our data also suggest that the potency of cigarettes as a carcinogen may result from their ability to induce DNA damage while failing to trigger the apoptotic progression permitting survival of cells harboring potentially oncogenic mutations.
Original language | English (US) |
---|---|
Pages (from-to) | 121-129 |
Number of pages | 9 |
Journal | American journal of respiratory cell and molecular biology |
Volume | 33 |
Issue number | 2 |
DOIs | |
State | Published - Aug 2005 |
Keywords
- Apoptosis
- DNA content
- PARP
- TUNEL