Abstract
The asymptotic efficiency of a generalized likelihood ratio test proposed by Cox is studied under the large deviations framework for error probabilities developed by Chernoff. In particular, two separate parametric families of hypotheses are considered [In Proc. 4th Berkeley Sympos. Math. Statist. and Prob. (1961) 105-123; J. Roy. Statist. Soc. Ser. B 24 (1962) 406-424]. The significance level is set such that the maximal type I and type II error probabilities for the generalized likelihood ratio test decay exponentially fast with the same rate. We derive the analytic form of such a rate that is also known as the Chernoff index [Ann. Math. Stat. 23 (1952) 493-507], a relative efficiency measure when there is no preference between the null and the alternative hypotheses. We further extend the analysis to approximate error probabilities when the two families are not completely separated. Discussions are provided concerning the implications of the present result on model selection.
Original language | English (US) |
---|---|
Pages (from-to) | 1-29 |
Number of pages | 29 |
Journal | Annals of Statistics |
Volume | 46 |
Issue number | 1 |
DOIs | |
State | Published - Feb 2018 |
Bibliographical note
Publisher Copyright:© Institute of Mathematical Statistics, 2018.
Keywords
- Asymptotic relative efficiency
- Generalized likelihood ratio
- Generalized linear models
- Large deviation
- Model selection
- Nonnested hypotheses
- Variable selection