Chemolithotrophic primary production in a subglacial ecosystem

Eric S. Boyd, Trinity L. Hamilton, Jeff R. Havig, Mark L. Skidmore, Everett L. Shock

Research output: Contribution to journalArticle

49 Scopus citations

Abstract

Glacial comminution of bedrock generates fresh mineral surfaces capable of sustaining chemotrophic microbial communities under the dark conditions that pervade subglacial habitats. Geochemical and isotopic evidence suggests that pyrite oxidation is a dominant weathering process generating protons that drive mineral dissolution in many subglacial systems. Here, we provide evidence correlating pyrite oxidation with chemosynthetic primary productivity and carbonate dissolution in subglacial sediments sampled from Robertson Glacier (RG), Alberta, Canada. Quantification and sequencing of ribulose-1,5-bisphosphate carboxylase/ oxygenase (RuBisCO) transcripts suggest that populations closely affiliated with Sideroxydans lithotrophicus, an iron sulfide-oxidizing autotrophic bacterium, are abundant constituents of microbial communities at RG. Microcosm experiments indicate sulfate production during biological assimilation of radiolabeled bicarbonate. Geochemical analyses of subglacial meltwater indicate that increases in sulfate levels are associated with increased calcite and dolomite dissolution. Collectively, these data suggest a role for biological pyrite oxidation in driving primary productivity and mineral dissolution in a subglacial environment and provide the first rate estimate for bicarbonate assimilation in these ecosystems. Evidence for lithotrophic primary production in this contemporary subglacial environment provides a plausible mechanism to explain how subglacial communities could be sustained in near-isolation from the atmosphere during glacial-interglacial cycles.

Original languageEnglish (US)
Pages (from-to)6146-6153
Number of pages8
JournalApplied and environmental microbiology
Volume80
Issue number19
DOIs
StatePublished - Jan 1 2014

Fingerprint Dive into the research topics of 'Chemolithotrophic primary production in a subglacial ecosystem'. Together they form a unique fingerprint.

  • Cite this