Abstract
Microbially derived modular polyketide synthase and nonribosomal peptide synthetase biosynthetic pathways are a rich source of novel natural products. Development of these systems for the engineered biosynthesis of diverse secondary metabolites continues to progress as a robust source of chemical diversity. Recent efforts that employ individual enzymes and catalytic domains for the production or modification of small molecules have met with growing success. In this study, the thioesterase domain from the cryptophycin biosynthetic pathway was isolated and its function evaluated with a series of linear chain elongation intermediates in developing a novel chemoenzymatic synthesis of the cryptophycin/ arenastatin class of antitumor agents. The results show the high efficiency of the thioesterase in generating the 16-membered depsipeptide ring of this important natural product system. Moreover, analysis of selected substrates revealed considerable tolerance for structural variation within the seco-cryptophycin unit C β-alanine residue, but strict structural requirements at the phenyl group position of the unit A δ-hydroxy octadienoate chain elongation intermediates.
Original language | English (US) |
---|---|
Pages (from-to) | 13457-13466 |
Number of pages | 10 |
Journal | Biochemistry |
Volume | 44 |
Issue number | 41 |
DOIs | |
State | Published - Oct 18 2005 |